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During the past year, progress has been made in (1) the interpretation of

pressure-induced resonances; (2) the theory of the interaction of broadband light with

atoms; (3) the theory of coherent transients and (4) the theory of laser cooling below the

Doppler limit.

1. Interpretation of pressure-induced resonances. (P.R. Berman).

Some of our earlier work on the interpretation of pressure--induced resonances using

both semi-classical and quantized field dressed-atom approaches has been

published. 1* "2 ' 3 " This work has been carried out in collaboration with G. Grynberg of

the Ecole Normale in Paris. In the past year, we hay. coi-'pleted this study by comparing

calculations of pressure-induced resonances in four-wave mixing signals usinf both the

Schrodinger and Heisenberg pictures in a i'lly quantized-field approach. 4 '5  It is shown

that the calculation takes only a few lines in the Heisenberg picture, but is much more

involved in the Schrodinger picture. We believe that this is a general result for situations

in which atomic state operators, averaged over all modes of the radiation field, are being

evaluated.

While the Schrodinger calculation is more difficult, it brings out new features of the

problem that are hidden in the Heisenberg picture. In the case of the pressure-induced

resonances, the Schrodinger calculation provides new insights into the origin of the

resonances. It is shown that the coherent four-wave mixing signals arise from interference

of signals emitted at different atomic sites - this clearly shows the cooperative nature of

the emission. The pressure-induced resonances arise from specific terms in which vacuum

field modes other than those involved in the four-wave mixing signal are produced. 5 These

results have implications for probe gain or absorption in the pressence of collisions. The

Schrodinger picture may also prove useful in understanding mechanisms involved in laser

cooling.

An asterisk indicates that a reprint or preprint of this article has been forwarded to

the Scientific Officer with this report. Reprints of articles have been furnished to

DTIC with this report. Preprints or reprints of these articles are available on

request to anyone receiving this report.
DTiU ~.Z
Unamnwiced LI
Jus5t j f i cati

. " By -

Distribution/-

,( 7,j AvailabilitY Codes

2 AvailJ and/or

P~ist special



Our work has also led us to compare the Schrodinger and Heisenberg picture

calculations of resonance fluorescence in the presence of a strong field. Again, the

Schrodinger calculation is quite complicated and our work in this area is still in progress.

(2) Interaction of broadband iht with atoms (V. Finkelstein, P.R. Berman).

The optical coherent transients that arise when a sample of two-level atoms is

irradiated by a sequence of two or three broad-bandwidth pulses were studied

theoretically. 6 * The first two pulses are correlated with one another and can be strong
enough to saturate the two-level atuaic transition. Taking into account the effects oi
inhomogeneous and homogeneous broadening, we calculate the intensity of the transient

signals, emitted in different directions, as a function of delay time. In particular, it is

shown for strong excitation pulses, that the strongest signals exhibit a peak having a width
gve ythe cross--correlation time of the pulses, . Thegiven bye preliminary experimental

results obtained at Laboratoire Aime Cotton (France) by the group of J.-L. LeGouet
confirm our theoretical conclusions. In the case of two-pulse transient theory, the peak is
found to disappear when the Doppler width of the atomic ensemble becomes sufficiently7*
large , in qualitative agreement with experiment. 8

The optical coherent transients induced in a sample of three-level atoms by

time-delayed fluctuating correlated pulses are also being considered. We have seen that
the three-level dynamics leads to a signal which, as a function of the delay time, depends

dramatically on the intensities of the excitation pulses. For strong pulses, the signal may

vary significantly on a time scale much smaller than "c1 . This effect may permit one to

obtain time resolution better than the cross-correlation time of the pulses. The results will
be submitted for publication in the near future. This work was carried out in collaboration

with P. Tchenio of Laboratoire Aime Cotton.

3. Theory of coherent transients (E. Block, P.R. Berman).

In trying to interpret the rotary echo data of A. Szabo, 9 we have carried out a

detailed analysis of rotary echoes produced by atoms whose frequency is being perturbed in

a stochastic manner. Good agreement with Szabo's data has been achieved and an article

is in preparation. The analysis has been extended to include rotary echoes whose "off'

time is arbitrarily long.
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We have also analyzed the experiment of Itano et al10 , who claim to have

demonstrated the quantum Zeno effect, inhibition of a transition produced by continuous

observation of a system. It is shown that, while the Itano interpretation has some validity,

the same conclusion is reached simply by studying the dynamics of the three-level system

they consider, without any mention of wave-packet collapse. Moreover, their experiment

does not really address the quantum Zeno paradox 1 1 - if one continuously observe a

particle in a bubble chamber, why doesn't he affect its lifetime? We are proposing an

atomic analogue to the bubble chamber experiment which should shed some new light on

the quantum Zeno paradox.

4. Laser cooling below the Doppler limit (P.R. Berman).

Recently, laser cooling below the so-called Doppler limit has been achieved. 12 This

came as somewhat of a surprise since it was in contradiction with the predictions of

conventional theories. Subsequently, it was appreciated that the magnetic-state

degeneracy of the transition levels was a critical feature in cooling below the Doppler limit.

We have formulated a general theory for the interaction of several radiation fields with

atoms having arbitrary level schemes. 13 "' 14 . The theory has been applied to a calculation

of the friction force in 1-D cooling of atoms below the Doppler limit, both in the absence

and presence of an external magnetic field. Analytic expressions have been obtained 14

which are in agreement with previous numerical results. 15 Our theory is formulated using

an irreducible tensor basis for density matrix elements; this formalism is very effective for

analyzing magnetically degenerate systems.

The formalism can also be applied to a study of collision effects in non-degenerate

four-wave mixing. We hope to show that optical pumping produces the apparent

discrepancy between theory and experiment observed in the four-wave mixing experiments

of Liu and Steel. 16

5. Miscellaneous

Earlier work on quantum jumps, 17 the exchange collision kernel, 1 8 and effects of

magnetic-state degeneracy in radiative collisions 19 . have been published or submitted for

publication.
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Optical coherent transients induced by time-delayed fluctuating pulses:
Three-pulse transients

V. Finkelstein and P. R. Berman
Department of Physics, New York University, 4 Washington Place, New York, New York 10003

(Received 8 January 1990)

A theoretical analysis of the optical coherent transients that arise when a sample of two-level
atoms is irradiated by a sequence of three broad-bandwidth pulses is presented. The first two pulses
have a relative delay time of order of the correlation time of the pulse fluctuations and are sent into
an atomic vapor from different directions. These pulses, whose temporal width is much greater
than the delay time, can be correlated with one another and can be strong enough to saturate the
two-level atomic transition. The third pulse is weak, noncorrelated with the first two, and is delayed
in time so that it does not overlap them. We present a detailed examination of the transient signal
that is produced when the third pulse is scattered by the spatial gratings in the population difference
of atoms created by the first two pulses. Taking into account the effects of inhomogeneous and
homogeneous broadening, we calculate the intensity of the transient signal, emitted in different
directions, as a function of delay time. The signal is found to depend dramatically on the intensities
of the excitation pulses. It is shown that, for strong excitation pulses, there is a direct dependence
of the signal on the cross-correlation time of pulses -12 that does not exist when the pulses are weak.
In particular, the strongest signals exhibit a peak of width of order 7c2. This peak can have a very
narrow dip near its maximum whose width is much smaller than r,2, if the pulses are fully correlat-
ed. We develop a representation of the time evolution of the Bloch vector of a two-level atom,
driven by time-delayed pulses, that enables us to explain our results. In this representation, the two
time-delayed pulses are replaced by two fully overlapping pulses having some effective amplitudes
and atomic field detunings.

I. INTRODUCTION Atomic -

Experiments in which coherent transients are produced k3  kl Sample
by time-delayed, correlated, fluctuating optical pulses' -18
have received a great deal of attention in the last few Signals
years, owing to their potential as a source of subpi- (a)
cosecond time resolution. The advantage of using
broad-bandwidtn light lies in the fact that under certain 2
conditions, a time resolution may be achieved that is
equal to the autocorrelation time i-, of the applied fields. Signal
This autocorrelation time may be orders of magnitude n-l------
smaller than the pulse duration tp. 1 tp "):t12*lp "13 "!3'tp3

A convenient experimental configuration for observing 0b1
such optical transients involves sending either two or (b)
three laser pulses into an atomic vapor. In this paper we
consider only three-pulse transients (PT-3). Two pulses b
(which may be derived from a single laser), having wave
vectors k, (pulse 1) and k2 (pulse 2), respectively, are sent 'Jba
into a sample of two-level atoms [see Fig. I(a)]. The wave
vectors are chosen such that 1k, =1k 21=k and a
0=L(k,k 2 ) << 1. Pulse 2 and pulse 1 have a relative time (C}
delay denoted by t12 . For t12 >0 (t12 <0), pulse I pre-
cedes (follows) pulse 2 [see Fig. 1(b)]. Under PT-3 condi-
tions these pulses create spatial gratings in the population FIG. 1. The three-pulse transient (PT-3) configuration. (a)
difference of atoms with Bragg vectors n kd =n (k2 - k I), Angled-beam configuration. (b) The temporal sequence of
n =0,±I ..... .These gratings are subsequently probed oulses: for t12 >0 pulse I (wave vector k,) precedes pulse 2
by a thira. pulse with a wave vector k3 that is time de- (wave vector k2), the third pulse does not overlap the first two
layed by t13 > t12 + tp relative to the first excitation pulse. pulses. (c) A two-level atom having transition frequency ow is
The energy radiated in the directions k3+nkd is studied driven by the pulses, each having central frequency W.

41 6193 @1990 The American Physical Society
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as a function of t12. obtained 5 in the limit of stationary atoms subjected to
Although signals can be generated by scattering from fully correlated, time-delayed fields, one of which was

nth-order gratings, most experimental work has concen- weak, while another was strong: altp << I <<a 2tp
trated on the signals originating from the first-order grat- [a, = If, 12r (i = 1,2), f, is Rabi frequency associated
ings (n =±I). For weak incident pulses or for fully with field i]. It was shown theoretically, and has been
separated pulses, the first-order gratings provide the ma- confirmed experimentally, that under these conditions the
jor contribution to the signal. However, for strong, over- radiated energy W 1

31( t1 2 ) exhibits a narrow dip centered
lapping incident pulses, higher-order gratings begin to at t12 -0, superimposed on a broad background signal.
contribute appreciably. The dip has a width of order r, and relative depth equal

The early experimental results, - obtained for weak to 0.5
incident fields, have been interpreted in the context of This observation motivates us to consider the limiting,
perturbation theory. More recently, however, time- but important, case in which the correlation and delay
delayed two-pulse"1 and three-pulse transients 2 - "5 have times are sufficiently small to satisfy
been examined under conditions in which at least one of
the pulses is strong; that is, e,t12 <<a -,tAj ',T1 T . (1.2)

at P>>l , No restriction is imposed on the ratio t, 2 /7,. Under
these conditions we have found a closed form solution for

where a 7=f2 r, and f is a Rabi frequency associated with the signal energy, valid for arbitrary field intensities and
a laser field interacting with a two-level atom. The relaxation rates. Some direct dependence of the observed
three-pulse experiments are typically carried out at tem- signal on r, will be shown to exist in the strong-field re-
peratures 300-500 K using excitation pulses having gime; the interpretation of this effect is given in terms of
t P 10 ns, and with low buffer gas pressures; consequent- some additional detuning parameter that appears in the
ly, the Doppler width AD= ku (u is the most probable Bloch equations as a result of the time delay of the pulses.
atomic speed) satisfies the inequalities The conditions required for observation of the studied

A p>>t 1 2,T_1,T2
1 , 1) phenomena are discussed.

1 T' In Sec. II we derive the laser fields and quantum sys-
where T, and T 2 are ]onzitudinal and transverse relaxa- tem to be considered, and present the general expressions
tion times, respectively i u for the measured energy of the signal in the PT-3 case in

In the strong-field regime the signal energy as a func- terms of a single-time, two-atom correlation function.

tion of the delay time t12 may depend on the correlation Using the Bloch vector model, in Sec. III we develop a
time - 14.15 of the on new representation which permits us to analyze the dy-
the itself, while the depene e signal. namics of a two-level atom driven by the time-delayed
tuhehiop r widhfers herpy aom ens l ina fial, r pulses as if the pulses are fully overlapping. The equa-
Such behav r differs sharply from that in a weak-field re- tions for single-time two-atom correlation functions aver-
gime when the signal strongly depends on the Doppler aged over field fluctuations, which are needed in the cal-
width, and the correlation time does not play a separate culation, are derived in Sec. IV. In Sec. V we describe a
role inf the een oser aton-urely tegna- general solution to the problem. A weak-relaxation limit
ture of the phenomena observed in a strong-field regime is discussed in Sec. VI. An explanation of the depen-

remais unceardence of the signal on time. delay t,2 is pr'c:crted in Sec.

Theoretical analysis of the experimental results brings VII and the relative dephasing of the Bloch vectors in a

into play many profound theoretical problems concerned

with studies of the stochastic Bloch equations in the in- strong-field regime that leads to the results obtained in

tense field regime. A number of papers have been devot- Sec. Vi is considered qualitatively. The results obtained

ed to this problem in the last twenty-five years'19 - 40 and in a strong-relaxation limit are discussed in Sec. VIII.

numerous effects have been discussed assuming fluctuat-
ing radiation fields (resonant fluorescence, double reso-
nance, multiphoton ionization, optical induction decay,
Hanle effect, etc.). In most of these calculations, the
response of an atomic ensemble to a fluctuating field has
been studied as a function of the noise properties of the We consider an ensemble of two-level atoms each hay-
fields. In many cases the noise was assumed to be Marko- ing transition frequency wbo [excited state b, ground state
vian in nature. The problem under consideration herein a, as shown in Fig. I(c)]. Atoms interact with two laser
differs in that atoms are subjected to two time-delayed pulses of duration 1p, time delayed relative to each other
noise fields which may be correlated. Thus, the atoms re- by an interval 112. These classical incident fields can be
tain some memory of the first field when the second field represented as
acts. Even if the noise of each field is Markovian, the
combined effect of the two fields is non-Markovian, in er,t)-- e- it't
general, owing to these memory effects. This feature 2
greatly complicates the calculations. Initial attempts at
solutions employed diagrammatic methods. 14,41 Later, a + 62( -112)exp[i (tot 2 +kk-0r)I

decorrelation approximation42 was used and results were + c.c. , (2.1) I



41 OPTICAL COHERENT TRANSIENTS INDUCED BY TIME-.. 6195
S-

where, without loss of generalization, we take all fields According to Eqs. (2.2) and (2.3), the statistical proper-
having parallel polarization. It is assumed that the ties of the total field (2.1) are characterized not only by
aton-field detuning, A = ob - (, satisfies 1I << to, and the correlation time rs but also by the delay time 1t, pro-
ant 6, and 62 are slowly varying complex field ampli- vided the correlation parameter 4 0. In this paper the

tudes satisfying correlation times -4 as well as the delay time t12 are as-

cIklI sumed to be much smaller than any characteristic time in

4 1/6111k,2 /621 << W the problem [see Eq. (1.2)], but can be comparable to
• aeach other; that is

where c is the speed of light, L is a characteristic length /,t 1 2 <<AD ,tpa 1, ',A , T1 , T 2 . (2.7)
of the sample, and

In the three-pulse transient, the third pulse is assumed
kd=k2-kj, to be weak (a3t <<I), to have a broad baiidwidth

We introduce the Rabi frequency f,=YabG,f1 -t  (r33 ), and to be uncorrelated with the first two

(i = 1,2) associated with field 6,; uab is the dipole mo- pulses. It is switched on after both the first two excita-

ment matrix element of the a -. b transition. Both of the tion pulses and any transients associatea with them have

pulses are characterized by a broad spectrum, and the already died out. Equation (2.7) defines the delay times

amplitudes 6, and 6, and, consequently, the Rabi fre- for which the theory is applicable.
- It is also assumed that the transverse Doppler effect is

quencies f, and f2 are treated as complex stationary sto- negligible:
chastic processes that may be correlated with each other.
In particular, we assume that kd At

f f t)f, ( t -7) =a ig Iir I ik I nt T <

(f*(t)f2 (t -- ))=ag 2,(r) , (2.2) enabling us to set k 1,k, (k I+ k,)=k in certain expres-

sions.
(f lOf, (t-r)) 0, (f 2 (t)f2(t -r))0,

and B. Dynamical equations

In the rotating-wave approximation the following
(2.3) equations then hold for density matrix elements of a

(f ' (0f 2 (t - r) a1 2g 12 (7) , two-level atom having velocity v:

where the average is over all possible realizations of the P51 YIPi +8P2+ YP,

fluctuating fields. The quantity g,(r) (i,j=1,2) is a
correlation function normalized such that P2= -8Pi -y,p 2-Xp3 , (2.8)

T)d7.=1, i,j =1,2 - YPl+XP2 YI(P1 P3 ,)

where

and the autocorrelation parameters a, and a, are given
by pl=2 Re(pabe ..) ,

a =( f,(tM)r), i = 1,2 P2= 2 Im(pbe..I

while the cross-correlation parameter a 12 that determines P3 =P..a-Ph, P..±Ph, = I,
the mutual coherence of the Rabi frequencies is equal to

and
a 2= (f I (t)f 2(t) )712 

. (2.4)

Correlation times are defined by Y(t) = Y(t)+ Y 2(t -t 1 2)

r4'=g,- (0) . (2.5) X -Re[fI(t)e- 4], Y, -lm[f 1 (t)e ']

The cross-correlation time 7. 2 cannot be larger than auto- X2 -Re[f 2 (t -t 2 )], Y2 -Im[f,(t -t )] .9)

correlation times r. ,, and it follows that

2 =kd'r-°wtl2, 6=A+kt,
a 2  (2.6) f,(t)=Pb6,(t)- I, i=1,2

which is a measure of the relative coherence of the pulses, and P3, is the population difference p3 at thermal equilib-
satisfies rium. The transverse relaxation rate y, = T, 1 can be ex-

pressed as the sum of the spontaneous relaxation rate,
0! 4l <_ . yj = T,-, of level b and a collisional contribution y,'o, as

For fully correlated pulses D = I, while for noncorrelated y= +
pulses b=0. 2
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All the dependence on position of the atoms is contained where
in the phase parameter 0k; the z axis is taken in the kd ( (2.15)
direction.

Equations (2.8) can be represented as and 8 2
r,, +aYkpk+yp3e,,.3, m 1,2,3 , (2.10) 0(8)=exp -

k m&[

where is a Maxwellian distribution function, t t t2 is the

A=[ak]=A0 _ '  time immediately following the two-excitation pulse se-
quence, and

0 + 6 Y'6 6s

A -=takh -6 0 -X , (2.11)
Y X 0 We refer to W, 3)(t12 ) as the PT-3 signal intensity. It is

seen from Eq. (2.14) that the signal depends on the aver-
'Y 0 0 age product of Fourier components (2.12) of two Bloch

-F-= yt 0 vectors, associated with different atoms. In Eq. (2.14)
and all subsequent equations, a tilde denotes variables of

0 Yi a second atom, i.e., 6 =A+ kU .

The components (PIP2,P3) are the standard com- The problem is reduced to obtaining a two-atom
ponents of the Bloch vector R(t; 4,), which, according signal-time correlation function for the populationponntsdifference p. It will be shown that in a strong-field re-
to Eqs. (2.8)-(2.10), may be written in series form as d

gime, the gratings in the population difference fluctuate
+;4,) considerably; consequently, the correlation functionR(t;0 ,8) =  R R k(;8)exp(ik b) , (2.12)

k=-R e (2.15) cannot be factorized. In order to solve the prob-

where Rk) hcmk) (kand lem, we have to consider the second moments of the den-
ePr ,P2 ,P3ano sity matrix elements defined by

R k =(R( -k)) * .(2.13) T'"=mt')P(;")PP'"

It follows from Eqs. (2.10) that components of the matrix

We often will refer to p(T) as the nth-order population T,, evolve as

grating, even though it is a Fourier component corre- 1,r, 1 (amk Tkrn'+ lm'k Tk)

sponding to the nth-order spatial grating. k

+ Y(Pn8,m,3+m'mm3) (2.16)

C. Signal energy The solution of this equation averaged over field fluctua-
tions gives the function

The aim of this paper consists in studying the signal
emitted in the direction k 3 + n kd. In particular, it is the T (T 3 3 (t;4,,8, , ))
pulse intensity as a function of a delay time which is the
subject of investigation. When denving the general ex- from which one can extract the Fourier component
pressions for this quantity, we do not restrict ourselves to
any particular shape of the pulse envelopes. I f f 3,,/2Tu ,

It is shown in Appendix A that, if the third pulse is Tn"-'(t;8'6) 41T 2  -r/2
weak and is not correlated with the first two excitation
pulses, the PT-3 signal intensity in the direction k 3 + n kd e (2.17)
is proportional to the quantity defined by

needed in Eq. (2.14). It also will prove useful to intro-
___- __ r (6Aduce the change of variables

Aon.r JJ 2y,+i&- 4_ = (4,- ), 42=0 (0,+0) , (2.18)

X(T f (t;6, ))d6dg , (2.14) and rewrite Eq. (2.17) as

I_ f / O f 3 / d .O+ e -i. 0_ T ( t ; _ , 0 + ,6 ) .(2 .19 )
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Hereafter we take 0 and in the simplified form respect to t12, 6_ =8--, and + =8+&. The parameter
4,=kd'r, =kd~ "  s is given by

instead of using the rigorous definition (2.9), as the term = if t1 2<0 (2.21)
ot 12 leads only to a shift of origin of coordinates and does -
not affect the Fourier component (2.19) and, consequent- If yt is much smaller than apy characteristic spectral
ly, the PT-3 signal. width in the system, Eq. (2.14) can be simplified by using

The signal (2.14) can be written as a sum of two terms, the following approximation:
one an even function of t 12 and the other an odd function
of t 12 . Using both Eq. (2.13) and the fact that T is un-- (222
changed if a, and a 2 are interchanged, one can show that (2 y, +i8-)-1= Tr5(&_iP (2.22)

T.- _ ( "'n) ) can be written as

T" '-8(t;,=)=N1 (8, )+is8._ 2(6 -,8) (2.20) with 5( ) being the 8 function and P denoting a principal
value. Taking into account Eqs. (2.22) and (2.20), we

with N, and N2 be.ng real functions which are even with finally obtain from Eq. (2.14)

W -A-V/2 [ 0,r V-16+ 2 N 2 8,8 )d_ d . (2.23)

The first term in (2.23), which is an even function of t12, It is well known that in absence of relaxation Eqs.
involves a single integral over 8+ (or, equivalently, over (2.8) can be rewritten in a ve .,or form as
velocity); consequently, this term can be interpreted as X
arising independently from the different velocity groups
of atoms. The second term in (2.23) is responsible for an R=[H Y (3.1)
asymmetry in the signal as a function of the delay time 8

t12 ; it involves a double integral over velocities, where X and Y as defined in Eq. (2.9) are the real and

imaginary parts, respectively, of the Rabi frequency asso-
III. FULLY OVERLAPPING PULSES ciated with the electric field amplitude, taken with the
VERSUS TIME-DELAYED PULSES: negative sign.

WHAT IS THE DIFFERENCE? Let us consider the rotation of the Bloch vector R un-

If the excitation pulses fully overlap, i.e., t, 2 =0, the der the influence of two arbitrary time delayed pulses. It

non-Markovian nature of the problem related to the time is always possible to find a time t0 , such that the Rabi fre-

delay is removed. As a result, all the standard methods quency f(t) of any pulse is negligibly small for t <t o .

for treating fields with short correlation times can be ap- The exact value of to does not play any role, so we put it

plied. What may be less obvious, however, is that, owing equal to zero.

to conditions (2.7), these methods also work for nonzero According to Eqs. (2.9) the angular velocity H equals

delay times. Before going into the details of such a calcu- H=Hl(t)+H 2 t),
lation, we introduce a model which enables us to gain
some physical insight into the dynamics of two-level where
atoms interacting with time-delayed pulses. We do not
take into account the relaxation processes at this point, H 2 (t) = H 2(t t 12 )

as they play no role in the particular phenomena dis- I b
, ( ) t t)

cussed in this section.
For nonzero delay time we would like to represent the H= y(t) , H 2= Y2 (t) (3.2)

0position of the Bloch vector at time t; as i result of some
rotation performed under the influence of two pulses
which are fully overlapping rather than spaced apart in At time t =2tl2 the position of the Bloch vector
time as is the actual case. In other words, we replace the R(2t 2 ) results from two consecutive rotations, each of
two time-delayed pulses by two, modified simultaneous duration t12. During the first one, an atom is driven by
ones. The new pulses produce the same effect as the two the first excitation pulse only. The Bloch vector rotates
time-delayed pulses. This representation will let us for- with angular velocity
mulate the effect of the time delay in a simple and sys-
tematic manner. H=H1 (), 0< t< t12
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and, at t =t12, takes the form H=H(t)+H2(t)-Had(t), for 05 1 t ,12 (3.6)

R(t 1 2 )=R(0)+ f0 [H(t')R(t')]dt' (3.3) where an additional angular velocity component is intro-
duced to achieve the same final position of the Bloch vec-

The second rotation is performed under the influence of tor (see Fig. 2). In terms of the new angular velocities,
both pulses (see Fig. 2) with angular velocity the modified intermediate position R'(0 12) of the Bloch

H = H 1( t+ H 2(t -1 12), 12 : t:2 12 . vector is given by

The position of the Bloch vector at t =2t12 is then given R'(tl2)=R(0)+ fo [ 2( t ' )

by -Had(t')]R(t')Idt' (3.7)
2tl2

R(2t)12  R(t 12 )+ f { [H1 (t') and may not coincide with the true value R(t 2 ). Using
12 Eq. (3.5), one finds that the final position of the Bloch

+H 2 (t'-t 1 2 )JR(t')dt' . vector at t =2t 2 is given by
(3.4) -2t 12

R(2t 12 )=R'(t12 )+ f2 [H 1(t')R(t')]dt' (3.8)
We would like to represent the same transition from 12

the starting position R(0) to the final one R(2t12 ) as a re- Since the delay time satisfies condition (2.7) the Bloch
sult of a different sequence of rotations. The second rota- vector rotates only slightly in a time period t 12 and Eqs.
tion is performed under the influence of the first pulse (3.3), (3.4), (3.7), and (3.8) can be solved by iteration. Car-
only: rying out the iterations to second order gives us two ex-

pressions for R(2112 ) in terms of R(0). These expressions
H=H1 (t), for t12 <t <_ 2t12 (3-5) are identical provided that

while the first rotation is carried out with an angular ve- Had(t)= r1 2 [H 1(t')H2(t)]dt' (3.9)
locity I

From the geometrical point of view, the appearance of
Had:*O is simply a consequence of the fact that two suc-

H1  cessive rotations with different angular velocity vectors
H, and H 2 do not coincide with that of a single rotation

u - with H=H+H 2.
,-"H 2  We can carry out a similar transformation for the next

HI" H2* Hadt,, S')time period t12 <t S 3t12 and so forth (see Fig. 2). At
H1 Hi each step we obtain the same result (3.9) for the time in-

H A64. tervals n=1 tS( + 12 i1,2... . When this
transformation is completed up to the time t = we get

ad the correct position of the Bloch vector, R(t0 ), although

/ . all the intermediate values R'(ntl2 ) differ from their true
H1  ~ -' values. The vector R(t° ) can be regarded now as a result

,tlJ_ (2t12) of the rotation performed under the influence of the two
!//R(3t12 ) fully overlapping modified pulses along with some
(V1i2) modified atom-field detuning. The modification of the

field components and the detuning is given by Eq. (3.9).

If the laser field is fluctuating, the vector Hd is also a
fluctuating function of time. It turns out that the fluc-
tuating part of Had(t) results in contributions which are
negligible in the limits discussed in this paper. Conse-
quently, the signal depends only on (Had). Taking intoFIG. 2. Schematic representation of stochastic rotation of a account definitions (2.9) one finds that the only nonzero

Bloch vector R for given time-delayed fluctuating excitation c on t f thn average d t ha the 3

pulses. Solid curve, the trajectory of the tip of this vector on the component of the averaged vector (Hd) lies along the 3

surface of a unit sphere. Positions of the Bloch vector at time axis and thus describes some additional detuning. This

t =O, tl2,2tl2,3t,2 are represented by solid arrows. Trajectory component had,3 , is given by

of the tip of the Bloch vector are shown for 0 <_ t 5 2t 12 (dashed had3 = (Had )3 =G (t12 )a 12sinO , (3.10)
curve) and t ,2 < t 5 3t12 (dot-dashed curve) using an effective an-
gular velocity corresponding to fully overlapping pulses (see where
text). Dashed arrows represent the modified intermediate posi- 12
tions R'(t,2 ) and R'(2t1 2) of the Bloch vector. Note that at the G(t 12 )- f2912 (i")dr; G(±oo )=±l . (3.11)
end of each step of the transformation the position of the actual o
and modified Bloch vectors coincides, even though they differ The additional detuning had,3 is nonzero only for time-
throughout the intervals. The wide arrows labeled by various delayed pulses (112#0), if both a, 2 #0 (the pulses are
values of H give the angular velocity in each interval, correlated) and =kd.r :AO . It depends strongly on the
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position r of the atom and on the delay time t1 2 through located at points r and T, respectively. We present only
the functions 0 and G(12), respectively. Owing to its three of the nine equations for T, because, under the ap-
dependence on G(t12), the absolute value of this addi- proximation applied here, the rest of the equations are
tional detuning rises from 0 to a 121sinul as t121 varies decoupled from Eqs. (4.2) and (4.3) and do not play any
from 0 to I 121> -r12 . Hence, if this additional detuning role in this problem. We shall discuss solutions of Eqs.

significantly modifies the dynamics of the two-level atom, (4.1)-(4.3) in Sec. V. Before doing so, let us consider the
we can also expect the PT-3 signal to depend on t12 even coefficients appearing in these equations. The parameter
if T 1 2 -Ir-

2 . The implications of this model are explored 2a(O) which appears in Eq. (4.1) is proportional to the
below, mean intensity of interference fringes at the location of

the atom. This parameter is responsible for the decay of
IV. AVERAGED EQUATIONS P = (P3) = (Paa -Pbb); in other words, (2a) -' is a relaxa-

FOR THE CORRELATION FUNCTIONS tion parameter whose origin can be traced to the com-
bined action of the fluctuating excitation pulses. In Eqs.

The single-time two-atom correlation functions (4.2) and (4.3) the parameter x, equal to the sum
(TWm(t)) are the solutions of Eqs. (2.16) averaged over a(4)+a($) (Q=kd-r,q=kd.'f), leads to the decay of the
histories of the laser fields. A solution for ( Tm ) for the averaged, single-time, two-atom correlation function T.
general case of arbitrary t12 will be discussed elsewhere. Another parameter, Q, proportional to the correlation

In this paper we obtain exact results for delay times t12 between interference fringes at different points r and ?,
satisfying Eq. (2.7), i.e., sufficiently small that the Bloch provides coupling between the population correlation
vector R, as well as the tensor Tnm, varies only slightly function T and the coherence correlation function Z. As
during this time period. Nevertheless, it will be shown a(0), x, and Q depend on the cross-correlation parameter
that the signal (2.14) can vary significantly as a function a 1 2, we expect the solution of Eqs. (4.)-(4.3) to differ
oft 12 even under this restriction, substantially for correlated (a,2,0) and uncorrelated

Owing to condition (2.7) we can use the decorrelation (al 2=0) pulses. Finally, we note that quantity 8f defined
approximation 42 when deriving equations for ( Tn, ). We as a difference of modified detunings in Eq. (4.7), appears
follow the method described in Refs. 15 and applied there in Eq. (4.3). In Eq. (4.7), one sees that the atom-field de-
to this particular problem, extending the method to in- tuning 8 is altered by a term G(t12)a 2sin4 [see Eq.
clude effects of relaxation and atomic motion. We obtain (3.10)], whose origin was explained in the previous sec-
the following differential equations for (Tm) and (ps) tion and which is the only parameter in Eqs. (4.1)-(4.3)
that hold true for pulses of arbitrary shape: that depends on the delay time t12.

(pI)= (p2) =0 ,

-1a(()p+y(p3 e --P) ,(4.1)

T -2(x +y 1 )T +Q (, )Z +Q*(,4)Z* V. RECTANGULAR PULSES

+yIP3e(P+P) , (4.2) In this paper we consider pulses with rectangular en-

Z=-(x +2- +if)Z+4Q*T, (4.3) velopes

where f(t)=const0 for 0 < t < t ,

p= (P3(6,(b)), #= (p3( ,)) I

T= (0(8,O)p(6,)=(P3#3= T33  ,for which the coefficients (4.5) in Eqs. (4.1)-(4.3) do not
(4.4) vary with time. Although the assumption of rectangular

Z = ( (P I +'P20(-A)) pulses may seen to be a severe restriction, it turns out
that many of the results obtained are independent of

=(T +T 22 +i(T 21- T 12 )) , pulse shape.

and The ensemble of two-level atoms is assumed to be in
thermal equilibrium before the excitation pulses are ap-

a() = 1(a, +a 2 +2a 2cos4,) , (4.5) plied at t=O. The corresponding initial conditions are

x =a()+a(4)=a+Ca 2 +a 1 2 (cos$+cosO) P3=PaaO)PbbO=P3e

Q = [La2+ a le ( -4 + a l2(e &+ e-'4)] , (4.6)p1(0 =2 e P b( e -i2r ,(5 )pj(0)---2 Re[pab(O)e -,k 2 r= 0 , (5.1)

8f[8+ G (t12 )a 2sin] -[ +]G(t12)a 1 2sinI] p2(0) = 2 M [pab (0)e-ir 1=0,

8_ + G(t12 )a, 2(sinO- sino) . (4.7)

The function G (t 12 ) is given by Eqs. (3.11). implying that

Equations (4.)-(4.3) describe the first- and second-
order density-matrix correlation functions of two atoms p(O )=p3e, (T(0)) =p2, Z(0)=0 . (5.2)
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From Eq. (4.1) we find an averaged population difference ulation difference can be represented in a general form as
P3e -[2a_)+yllt 3 4.1 - r eT(

2a(0)+71 (yt+2ae (5.3) T=To+ , e Ti+e T 4e2a+Tse2af) (54)

The solution for the averaged second moment of the pop- where To is the steady-state solution

TY= 'p,(x +ry)[(x +2y, )2+82(
TO  P3 )+ (5.5)

(2a+Yr)(2& -+-1 ){(x +2y ) 2 6'](x +,r)-41QI2 (x +2y,))

The exponents 41,2,3 are the roots of the equation

(X+2yr)(X+2y,+x)(X+2y,+3x)=-2y(X+2y,+x)-82(X+2yj+2x)-2(yj-y,)(k+2Y,+x) 2  (5.6)

with VI. QUANTITATIVE RESULTS IN THE
WEAK-RELAXATION LIMIT rI Tp << 1; r T, << 1

yV=x -4Q 2

In this section we assume that
=2a la2[ - cos(O - ) =a 2(sinob sn ) (5.7)(61

The functions T (i= 1,2,3) are solutions of the homo- and consequently, the role of relaxation in the formation

geneous equations (4.2) and (4.3) (P3. =0); they corre- of the PT-3 signal is negligible, and the signal can be cal-

spond to the roots ki and take into account the initial culated using Eq. (2.23). Most experiments have been

conditions (5.2). The exact expressions for 1,2 , 3 are too carried out in this "weak-relaxation" limit.

complicated to be presented here. Limiting values for A. Weak-field regime
T 1, T 2, T3 are given in Sec. VI and Appendix C.

Finally, T4(a, )= T 5(r,a) is given by The weak-field regime is defined by

2yp 2 a(z 2 +2) a ,a2 << tp (6.2)

(2a+y,)[(z2 +52 )(2 d+y t )-8Q2z ]  (5.8) In this limit, the population gratings of order n =±1 lead
to the strongest PT-3 signals. The signals, originating

where z =- a -rI + 2y, from the n = 1 and n = - 1 gratings, are of equal intensi-
Inprinciple-a- n erl ity. In the weak-field regime, one can interpret the signals

eral solution (5.4) over 9 and o gives us the desired PT-3 in terms of a four-wave mixing process involving one in-

signal. However, to understand the dependence of this teraction with each of the three excitation pulses. If ine-

signal on the numerous parameters involved, it is useful qualities (6.1) and (6.2) hold, one finds (see Appendix B)

to obtain some analytical results. They can be obtained -
2 2 1 -cosi(&tp)

for large or small values of a parameter no which charac- T, - (tp;8,9)=a 2 t +2aja2  . (6.3)

terizes the number of population gratings of comparable
amplitude which are generated in the sample, each grat- As T(1 -- 1) given by (6.3) is a real even function of 8 -, it
ing of order n contributing to the signal in direction follows that N2 =0 in Eq. (2.20). Hence, to obtain the
k 3±nkd. For no << 1, only the gratings of the first order, PT-3 signal from Eq. (2.23), one needs only the expres-
n =± 1, are important. For no>> 1, it is possible to in- sion (6.3) with equal detunings, that is
tegrate (2.19) by noting that regions where cos4o=cos4 T"' -(tp;8,8)=N 1 (8_=0), given by
give maximum contributions to the PT-3 signal. T1, - , ) 2 

2(a 2

Hereafter, we replace t°=t P+t 12 by tp, since under 'T(t,, tp a a2). (6.4)
conditions (2.7) the difference between them does not To interpret (6.4), one can use Eqs. (2.15) and (2.13) to
affect the results. We assume that at thermal equilibrium rewrite T", 1 1 (tp;' , 5) as
a two-level atom is in its ground state and thus

P3,= 1 (5.9) T(,'-)itP;8,8)= (jp(11(t ;8)11)

Deviation from condition (5.9) leads only to decrease o1 7 )]2+ (=p313(tp;S)-p~')(tp)
2 ,

the PT-3 signal by the factor p~e . In addition, we drop (6.5)
the (JB, ) arguments and write T(t ;0,,,) simply
as T(t). where p")(tp) is the mean amplitude of the population
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difference grating, p(1 )(tP)=(p(')(tp;8)). From Eqs. X,=--2ala[l1-cos(4i-- )]

(2.12) and (5.3), and under condition (6.2), one finds that
pi )( tp ) is given by -[1- G 2( t12 )Ia' 2(sino-sin#)2 +82

p i ( t ) =a 12 , .(6.6)
+28G (t12 )a 12(sino-sini)]

The correlation function (6.4) consists of the two parts.
The first term al2t depends on the mutual correlation of
the pulses and is equal to the first term in Eq. (6.5), that X[aI+a 2 +aI 2(cos+cos) -I . (6.10)

is, to the square of the mean amplitude p(I (tp) of the
population difference grating. The second term of ex- All the other terms in the general expression (5.4) provide
pression (6.4) equals the average of the square of the fluc- corrections to the PT-3 signal which are at most of order
tuating part of the population difference grating and is in- (amaxtp)- I << 1.
dependent of the mutual correlation of the pulses. For An important feature of the strong-field signal is tied to
fully correlated pulses these two contributions are equal. the two terms in Eq. (6.10) that contain the function

From Eqs. (2.23) and (6.5) one obtains the PT-3 signal G(t12 ). For correlated pulses (a12==0; i.e., 4)#0), these

terms lead to the variation of the signal on a time scale of
WI =tp(a12+ala2) (6.7) r-", since G(t12 ) has been shown to vary over such a time

scale. As noted above, Eq. (2.23) is a valid starting point

which does not depend on the delay time t 12. One might for an analysis of the PT-3 signal in the weak-relaxation

have anticipated this result since, in a weak-field regime, limit. The part of the signal which is asymmetrical about

the significant asymmetry of the signal occurs only for 112 =0 arises from the N 2 term in Eq. (2.23). Both of the

long delay times It 12 1 > - , 3 ,8 for which the Bloch vec- terms in Eq. (6.10) depending on G(t12 ) affect this part of

tor can acquire a non-negligible Doppler phase (of order the PT-3 signal. It can be shown, however (see Appendix

ADt12 > 1). For t12 satisfying inequality (2.7), however, D), that in a strong-field regime the strongest PT-3 sig-

this asymmetry is negligible. For fully correlated pulses nals are characterized by small orders n and are almost

(D = 1), Eq. (6.7) coincides with a previously obtained re- symmetrical for It121 < a - 1. Although the asymmetrical

suit. 12 contribution to the signal is usually small, there are cer-

The important feature of the weak-field result is the ab- tain cases (to be discussed) where it cannot be neglected.

sence of a direct dependence of the signals on the correla- If we do not consider this small asymmetry, then accord-

tion time. This dependence emerges only in third order ing to Eq. (2.23) the PT-3 signal is determined by its

of the parameter atp and can be neglected. symmetrical part, N 1, that depends only on X, (8=0)

One can also see from Eq. (6.7) and the definition of a 12  from Eq. (6.10). Consequently, N I is affected only by the
that the part of the signal proportional to a 2, which de- term in Eq. (6.15) which is proportional to the parameter

pends on the correlation of the pulses, cannot be larger [ -G 2(t12 )]a 2 that varies from a12 to 0 as t 12 varies

than the part proportional to ala 2, which is independent from 0 to values > 12 Thus, for t 2 > r12 this factor van-

of this correlation. In a strong field, these properties of ishes. Consequently, the numerator of Eq. (6.10) becomes

the signals are changed dramatically. independent of 4) once t 12 > 'rc . There is an additional
dependence on a 12 contained in the denominator of Eq.
(6.10); however, it turns out this dependence does not
significantly modify the signal for small order n. As a re-

B. Strong-field regime sult, the signal is nearly independent of 4) for tl2>"1c in
other words, both correlated or uncorrelated pulses,

The main objective of this work is to study the regime characterized by 4) 1 and 4) 0, respectively, give rise
when at least one of the excitation pulses is strong. In to almost equal signals for t12 > 'T2.
the weak-relaxation limit (6.1), the strong-field criterion is The detailed calculations of the PT-3 signal are carried

out in Appendix D. Below we present the results in the
most important cases.amx = max( a,,a2 ) >t,7- . (6.8)

The PT-3 sifnal is determined from Eq. (2.17) [which 1. One strong and one weak pulse

gives T" -n'(t.) in terms of the averaged correlation As a, and a 2 enter Eq. (6.10) in a symmetric way, the
function T(tp)], Eq. (2.20) [which represents T("'-)(tp) PT-3 signal does not depend on which pulse is strong,
in terms of N, and N 2 ], and Eq. (2.23) (which gives the and this case is characterized by
PT-3 signal as an integral of N, over 8+ and N2 over 8±).
It is shown in Appendix C that T(IP ) is approximately amax >>t I >>amin, (6.11)
given by

T(tp,)=le "'11P (6.9) where amin=min(a,a 2 ). Taking into account Eqs. (6.11)
and expanding expression (6.10) to first order in amintp,

where we get the correlation function
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Tlt)--- epl28 t ] 2am t[

T(t - -exp K 3a- +-minp [cos(0- )-l]I2-(l-G 2 )4b[l+cos(+ )]l
3 ~ 3

2G8 1 2 ( l(sin-s
I (coso+cos4) J sin#)I. (6.12)a12  Gmax j J

The strongest signals (n #0) are emitted in the directions almost symmetrical around t 12 =0 for any Doppler width
k 3±kd. Picking up the terms proportional to AD; however, there is a small negative asymmetry which
exp i( -) needed in Eq. (2.19) one finds arises from the last term in Eq. (6.14) [the signal at t ,2 < 0

p 28 t is larger than at t, 2 > 0]. Such an asymmetry cannot ap-
Tam- )(t ) exp P pear in a weak-field regime.

12(t 2 i G6 2. Both pulses are strong
amax This case is described by the condition

(6.13) amin =min(j,, 2) >> tp- (6.15)

The signal obtained from Eqs. (2.20) and (2.23) is given by Population gratings of order n < n0 , with no >> 1, are
created by these strong fields; consequently, the signal in-

W m3) _minip 2-[1-G 2(t 12 )I') tensity in many directions, k 3±nkd with n < n0 , can be
9 ,2comparable. We need consider only n > 0, since the sig-

2___ it ,, I "-1 nals in the k 3-nkd directions are related to those at
V 2A 2  3m k3+nkd by

(0.14) W " (t 12 t 12 • (6.16)

Thus, when one of the fields is weak, the PT-3 transient It is possible to obtain analytical expressions for the

consists of a background signal and a narrow dip of signal in some important limiting cases provided

width 412 and relative depth (V/2 centered at zero delay n << a .intp (6.17)
time, t, 2 =0 (see Fig. 3). The dip is produced only for
correlated pulses (0*0) while the background signal ex- If mutual correlation of the pulses is moderate or weak,
ists for either noncorrelated or correlated pulses. The re- that is, if
suit (6.14) coincides with that ootained earlier 3 for fully _ 0.5 (6.18)
correlated pulses, when 10=a 2 (aa 2 )-1=l, and for

amaztp = oo. Owing to condition (6.11), the signal (6.14) is the PT-3 signal takes the form (see Appendix D)

W1 3e /2? 1+[ [-G2(tz2)1--n 2 -4 l+ 12 4 -+ 2GnfD 2+D n2  '

(6.19)

where and all the terms in parentheses that are proportional to
tb1/2 are assumed to be small compared to 1. Note that

, , 2tp- 1 1/2D << 1 corresponds to a relatively large Doppler width,

3( a,+ a 2) and D >> 1 to a relatively small Doppler width.
In the limit that 4>=0 (noncorrelated pulses) the signal

= 2(aa2' 2  (6.19) reduces to
a1 +a 2  (.0

and (6.20) W13 )=O= e' 2/2n2 (6.21)

3(a, +a 2)
D = 3The signal (6.21) does not depend on t1 2 , and Eq. (6.21) is

4&'Dtp valid for all n <<,q2 [see Eqs. (6.17) and (6.20)].
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I It is also seen in Eq. (6.19) that the background signal for
2> rc does not exactly equal that for noncorrelated

4-o.0 pulses. This difference reaches its maximum value
0.2. 5 -- 0/16<<1 when the pulses have equal intensities,

al=a 2, and the background signal decreases with in-
.0.

1creasing (D.
0In contrast to the signals corresponding to small n, the

0.5 1.0signal in a direction characterized by n >>q exhibits a
dip (see curve a in Fig. 5), if

n 1 < <  . (6.24)
o1VI +D

-4 -2 0 2 4 Condition (6.24) can be satisfied if the Doppler distribu-
t,2/T."a tion is narrow, D >> 1, or the pulses have very different

1 2  intensities, fl<<1 [or amax/amin>10, see expression
FIG. 3. Signals orresponding to order n= VS t12/7C in a (6.20)]. The signal has a small negative asymmetry; the

weak-relaxation limit (yjtp =0.02 and y,tp =0.01 in this figure dip is positioned at t12 =0 and has relative depth
and Figs. 4-10) in the case of one strong and one weak pulse
amaxtp =30, amintp =0.05, for different degrees of mutual corre- W, 3

1(t1 2 >>r)- J,,(
3 1

2 =0) n2
lation IV of the pulses; AD tp = 14. All curves in this and all oth- IS1 - 2 <<1
er figures represent numerical solutions of Eqs. (4.1)-(4.3). W "(t 12 >>rc 7)

(6.25)

The signal (6.19) for correlated pulses differs only However, as soon as condition (6.24) is violated, the
slightly from that for uncorrelated pulses, but the dip vanishes and the signal continuously decreases as t, 2
difference between the two is a function of t 2. The PT-3 varies from negative to positive values (see curve c in Fig.
signal (6.19) in a direction characterized by n <<7 exhib- 5).
its a small peak having width i.

2 and relative height If the pulses are strongly correlated, that is if

31( 12 "'(t (l-4))<<l , (6.26)S- W1 12=t ) -Wn _t'(D c= <<l1 (6.22)
1(") 2 12 nl- c 4 the qualitative behavior of the PT-3 signal is similar to

that considered above; however, all the features are more
(see Fig. 4). The signal has positive asymmetry which is clearly defined as we proceed to discuss.
small for any Doppler width and ratio of the pulse inten- First, we consider the strongest signal, characterized
sities. Owing to this asymmetry the central peak max- by small n, n << t. The intensity of the signal is given by
imum of the signal is slightly shifted to positive delay WL,(3)= +
time, that is 5"' 12 WS + WAS (6.27)

tnax nifl (2+D) 12 << 12 (6.23) where W S and WAS are correspondingly the symmetrical
7 (1 +D) 3/ 2 T c and asymmetrical parts of the signal

7I

-L a

I.75

o ,I I ,
0 0 . -0

~0. 0

-4 2 0
04 -2 0 2 -4- ,, 2 4n/T.12tl/T

FIG. 5. Signals corresponding to high order n 20> 17 vs
FIG. 4. Signals corresponding to small order n = I <<7 vs t 421/c in a weak-relaxation limit in the case when both pulses

(1 /Irc in a weak-relaxation limit in the case when both pulses are strong: amnj , = 100 and a,,,i = 104 (curve a), 103 (curve b),
are strong: am.,tp = 10', amint, = 102 for different degrees of mu- and 110 (curve c). Degree of mutual correlation of the pulses is
tual correlation 0 of the pulses; ADtp = 14. moderate: 0=0.25; ADI P 14.
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Ws(t l2)= Ws( -t 12 ); WAS(t 12 ) - WAs( -t 12 ) • (6.28) mutual correlation of the pulses, since the dip vanishes as

For n «ii77, WS is much larger than WAS, and for soon as (1-4))> n 2 /,2, as shown in Fig. 4. For fullyForn <7/,Ws s mch argr tan ASandfor correlated pulses, the peak is approximately
<,_'2 it can be represented in the form (see Appendix correlated ties hhe than th akrou ialt 12-C 27r- lln(277/n) times higher than the background signal

D) [see Eq. (D17)1:

WS= rV t W+ + WW( (6.29) IV13 (It 1 I>rc2  (6.37)

with which is reached for It121 > re2 and which would be ob-
tained for noncorrelated pulses I =0, see Eq. (6.21) for

Wt =-_I In 47± n <<77].
7± n lexp( -Z± /2)+[Z± +exp( -Z± )]1/21 , In Fig. 6 the signal for order n= 1 is shown as a func-

tion of intensity of the weaker pulse. The transition from
(6.30) a dip of width r12 [amint p << 1; Eq. (6.14)) to the peak

and ( I l<« mintp «<amaxtp ) occurs for amintp - 1. The absolute

4ala2tp 1/2 intensity of the background signal varies with amintp as

3(a6+a 2±2a 12 ) 1 l 3 1 4 , (6.38)
( 1 2 I I I

Zt= n2 where I, is a modified Bessel function, and reaches its
maximum 0.07 for amintp = 1 -

If the pulses are strongly correlated, that is, if If the pulses have nearly equal intensities, such that
(I _(p) < n /7 2 , and if the delay time is very small, 1 --[=[(ai)"-(a)l/J2 /(a 1 ±a 2 ) «1

t12 <<.r.12 
2- - (6.32) one can see from Eq. (6.30) that W, >> W_ and thus

Ws [_ W+. The asymmetrical part WAs of the signal is
then Z± «1 in Eq. (6.30), and W± increases with in- still small. However, it cannot be neglected if the pulsesthen t(nas are fully correlated [(1-4)<n 2/772 <<l] and theCreasing 12 Doppler width of the atomic ensemble is large (D << 1).

1 in 27-± + 1 -- O+(tl 2 /r 2 )2/ (6.33) In this case WAS is given by

7± 2n2  
G + _ G22 if GI<< i7_

However, when WAS r2(4n 2 1) 3 '

12 >t1 2 >r, 2  -- 1 -(-b) 1/2 (6.34) (6.39)

WAS-- 6rn= ' if77 <<IG <<n? - ' (6.40)

then Z± > 1, and W± is given by116
W± = In 1 6( 7C2) 2 ]  (6.35)I

and decreases with increasing t12. Consequently, W±

0.

reaches its maximum for 5.,0 .

t12 71 2- 1 -4b) .(6.36) Z2

If the pulses have very different intensities -
(arax >> min or j6 << 1), the asymmetrical part of the sig- 2

nal WAs can be neglected, since WAS <<,6/ << i (see
Appendix D). Thus the signal is completely determined
by its symmetrical part Ws. The condition P << I holds 1 _A
when 71+ -7_ %z; in this limit W+ = W-, and the sig-
nal, obtained from Eqs. (6.29)-(6.35), exhibit a peak cen-
tered at t12 =0. The peak has temporal width It 2 1 =rcl

2

and, moreover, for fully correlated pulses (0) = 1) there is FIG. 6. Signal of order n = 1 as a function of t12 /r.2 and
an additional very narrow dip that appears in the middle aminl, in a weak-relaxation limit in the case when one of the ful-
of this central peak. This dip has width It12 1 = (n/q),r'2, ly correlated (O = 1) pulses is strong a,It = 500, while the in-
depth "-0.0271-1, and is very sensitive to the degree of tensity of another varies, 0.05 < amint, < 170; ADtP =7.
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2 n _ 21G I I6 I I I I

WAS + Ino tWAS-- 3* Gv °+ - -f l y o + (y 2' + 2 G 2D )"/  '"

if ni - <<IGI , (6.41)

where "'

2 -- -- --- -- -- - ----------

One can see from Eqs. (6.39)-(6.41) that WAS is much

smaller than W s . However, when It12 1 S (n /q)-r1 2, WAs

is comparable with the part of Ws which depends on de- 0 I 0 2 4-4 -2 o 2 4
lay time [see Eq. (6.33)]. As a result, the narrow dip in tm/.1

the middle of the peak practically vanishes (see Fig. 7)
and the maximum of the signal shifts to FIG. 7. Signals corresponding to order n I vs t 12 /r-2 in a

tmax .n 12 weak-relaxation limit in the case of fully correlated ((b= 1)
i2  7 strong pulses with almost equal intensities (altp = 120,

a 2t, = 100) for different Doppler widths of the atomic ensemble:
For t121 > r1c

2 the signal reaches its background value curve a, -ADtp = 1.4 (D=118); curve b, -ADtp=1 4 (D = 1.2);
given by curve c, - AD1p = 70 (D = 0.05).

Wo.:( tl2l>> -2=, 2 2V/'2+s -Inminl-e], }, (6.42)

where s is defined by Eq. (2.21). Comparing Eqs. (6.37) [weak-field regime, a, 2tp <<1; Eq. (6.7)] to the signal

and (6.42), one can see that even in the case of equal in- with a well-defined peak (strong-field regime, I << i,2p)

tensities of the fully correlated pulses the background sig- occurs in the intermediate range of intensities; that is,

nal differs only slightly from that corresponding to non- when a,,l2tp = 1. For these intensities the asymmetry of
correlated pulses. the signal and its absolute intensity reach their maximum

In Fig. 8 for a,/a 2=const= 1 the evolution of the sig- values.

nal with increasing intensity of both pulses is shown. The The above discussion is valid for orders n satisfying
transition from the signal with no dependence on t12 0<n<<7. The signal of order n=0 is difficult to detect,

as it is emitted simultaneously with the third pulse in the

same direction, but it is the strongest of the PT-3 signals.
It is given completely by its symmetrical part, and at zero

,-- delay time can be expressed asaI- 10

2 0.1 W
3

(tl2=0)= 
3
)(tl2=0)+ 3 1 (6.43)

ZFor t 12 > "rc2[n 2/2,2-( 1 _))]I/2, the difference between
PT-3 signals of zero and first order vanishes, and
W(3)0(t 12 ) coincides with the symmetrical part of the sig-

2 nal W(3)(t 12 ) given by Eq. (6.35). The zero-order signal
Z 0always decreases with increasing It 12I.

Let u now consider the PT-3 signals of higher order,
9. 0 -2 that is, with n >>q. These signals are relatively weak;

nevertheless, they have some features that deserve discus-

sion. For the sake of simplicity we consider fully corre-

FIG. 8. Signal of order n= I as a function of tl2 /7,2 and alt, lated pulses (0 = 1) in two limiting cases: (1) the pulses

in a weak-relaxation limit; ADtp=7. The fully correlated have very different intensities amax>>amin, and (2) the

(4= 1) pulses have nearly equal intensities a 2/a = 1.2 that vary pulses have equal intensities a , =a 2=a.
from small to large values (0. 1 < aI tp < 500). In the first case (arax >>amin), if
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n 4am, for equal intensities exhibits a dip whose minimum is
«< 1 , (6.44) shifted to positive 112. The dip has relative depth close to

17 amiai unity, since the background signal

the signal is given by W(3), t2 (6.49)

I f n 2(3Q G
2 ) 3n2rr

3wV' )e 412 is much larger than the value at zero delay time.

2 - 2 ) If the Doppler width is sufficiently large, such that
X 2(-G) (6.45) condition (6.48) is violated, the signal (6.47) becomes

471 2 strongly negatively asymmetric and the dip vanishes (see

Fig. 10).
where I 0 is a modified Bessel function. As shown in Fig. The remarkable feature of Eq. (6.49) is the power-law-
9, the signal (6.45) exhibits a profound dip of relative type dependence of the signal on n for t12 > ,12 rather
depth 1Sf=(1-2'q/7n)- 1 centered at t12=0; for than the Gaussian-like dependence seen in Eq. (6.45) for

It 12 > -.r2 the signal practically coincides with that for pulses having different intensities. As a result, it may be
noncorrelated pulses. easier to detect signals corresponding to large n if equal

When pulse intensities are used. By comparing Eqs. (6.49) and

n 4amin (6.21), one sees that the background signal for equal in-
4 >1, (6.46) tensity, fully correlated pulses differs from that for non-

7) amax correlated pulses. This is the only limit where such a

the background signal acquires a negative asymmetry if marked deviation occurs; the origin of this effect can be
D <2/n21 (see Eq. (D36)]. traced to the increasing importance of the a, 2 term in theIn the second case (equal pulse intensities) the signal is denominator of Eq. (6.10), a term that was ignored in the
given approximately by qualitative discussion following that equation.

When both fields are strong, the PT-3 signal differs in
3)  f n1 almost every respect from the analogous signal in the

3Grn 2VG erf 2(DG2+2)] /2 weak-field regime. The strong-field PT-3 signals are emit-

ted with comparable intensities in many directions (corre-
V2exp( - n2 /15) j nIGI 11 sponding n < n0 < 7), while the weak-field signals only in

3+ -rn 4-7 the k3l±kd directions. The signal for correlated pulses

can be much stronger than that for noncorrelated in the
where erf is the error function. 43  strong-field regime but not in the weak-field regime.

If the Doppler width of the atomic ensemble is Only the strong-field result depends directly on the
sufficiently small, such that cross-correlation time 1 12 exhibiting a well-defined nar-

2 __ 12 row peak (n <<-q), dip (n >>71), or combination of them
n2 -- <<1 (6.48) (n - 7) at t 12 =0. A negative asymmetry of the signal

D712  a also occurs only in a strong-field regime.
then, as in the first limit (a. 3 . amin), the PT-3 signal Finally, it is possible to show that, in sharp contrast to

the weak-field regime, for strong fields the signal induced

5
4 0 .5 0.5

ot

00
0 -4 -2 2 0 O-4 -2 0 2 4 t'S/T.18

tjX/Tj"

FIG. 10. Signals corresponding to different orders n vs
FIG. 9. Signals corresponding to different orders n vs t12 /rl 2 t,2/7-2 in a weak-relaxation limit. Both pulses are strong and

in a weak-relaxation limit. Both pulses are strong and have very have nearly equal intensities amtp--" 120, ai,t =100
different intensities a,,,t, = 104, a,,,tp = 100 (9=0.2); (#=0.996). All other parameters and notations are the same as

Dttp 14 , 0= 1. in Fig. 9.
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by the correlated pulses originates from the stochastic (n) _ in( n ( t ~ ) pP 3 3t; ) - ( ) + p n t ) - ntp ) , ( 6 .5 4 )
part of the population grating [p3( 3+ [ )(t,)- (t;l)] , (6)
while the contribution from the constant part of the grat- the correlation function T", 3 3

ing, (p1 n1(tp)), is negligible. In the weak-field regime, the is given by

constant and stochastic parts of the population grating T'n,(t =[pn)(t
induced by the fully correlated pulses provide signals of P P

the same intensity [see Eqs. (6.6) and (6.7)]. To under- + ([p )(t ;8)-p(

stwid the strong-field results one can consider the mean

amplitude p1("= (p(f)(tp )) for the grating of the order n. X[p-(tP;)p)(t)]) . (6.55)

Since the spontaneous relaxation is assumed to be We did not take into account the first term in Eq. (6.55)
negligible (,y I< «tp1) we obtain from Eq. (5.3) when deriving the results in the strong-field regime, ow-

P(n)( -)ne (aa+a2 )PIn(2a t, (6.50) ing to the fact that this contribution is (a) exponentially
_2 ,small if condition (6.52) is violated and (b) still small rela-

where I, is a modified Bessel function. In contrast tive to the second term of Eq. (6.55) [compare Eqs. (6.53)
to the two-atom correlation function Tn' - n and (6.49)] even if coiiAdiion (6.52) is satisfied. In other
= (p 3 n(tp )# (tp )), the single-atom amplitude (6.50) words, for all apa 2,ca 2, the signal in the strong-field re-
does not depend on either delay time t1 2 or the detuning gime is produced by the stochastic part of the populating
6. grating, i.e.,

As long as condition WA3) T (n,- 6 ,6)

(a +a 2 -2ct2 )tp a(nr)tp>!1 (6.51) -(pPn(t;6)-pn(t P)2) >>[pln1 (tp )]2 . (6.56)

is satisfied [a(4)) is defined in Eq. (4.5)], the mean grating
amplitude p1 n(tp) given by (6.50) is exponentially small
for any n, namely VII. QUALITATIVE EXPLANATION

OF THE STRONG-FIELD RESULTS

p~n1(tp ) <<.e-(a+a-2at2)tp<<1 To give a qualitative explanation of the strong-field re-

However, if the pulses are almost fully correlated ((P = 1) suits obtained in Sec. VI, we recall that the PT-3 signal
with nearly equal intensities (a!=a2 a] 2), inequality depends directly on the correlation function

(6.5 1) can be violated to the point that T p)= p(p;0, )Ppt; )) of population differences
of two atoms. In general, these atoms are characterized

(a I +a 2 -2a 2)tp < 1 . (6.52) by different positions (O:)#) and velocities (6 :). More
For maxIn, I I << a12tp it follows from Eq. (6.50) that precisely, according to Eqs. (2.19), (2.20), and (2.23), the

part of the signal symmetrical relative to t, 2 and n de-

(-1 )exp( -n 2/4a 2tp) pends only on the correlation (p 3(tp;45,8)pa(tp;;,6)) of
P fn(t P) ( t)1/2 atoms having the same velocity. The asymmetrical part

(41ra 12 tp )of the signal can arise when

Xe - (a,+a - 2a 12 P (6.53) (p 3(tp;4,6)p3(tp;$,S)) /p 3(tp; ,6)p 3(tp;4),6)) . (7.1)

and, owing to condition (6.52), the gratings characterized To explain the obtained results, we first consider the

by n < (2atp )1/2 have nonexponentially small mean am- behavior of the correlation function T(tp) as a function

piitudes -(atp ) -1/2 .  of 0, ,8,6 and t1 2 . Since in a strong-field regime the

It is not too difficult to understand the physical origin population difference p 3(tp;4),6) is a stochastic quantity

of Eq. (6.51). The atoms in the sample see interference with (p3(tp;4,6))80, only those atoms that satisfy the

fringes produced by the excitation pulses. Atoms at condition p 3(tp;,)=zp3(tp;#,6) contribute to the signal.

points other than interference minima are saturated by To determine the range of 4) and 4 and 6 and 6 that con-
the fields. If the pulse amplitudes are unequal, the inten- tribute to W 3 3(t 12 ) for a given t 2, let us consider fully
sity at the minima of the interference fringes is still correlated excitation pulses (a 12 =V/aa2)1 , when the
sufficiently high (in the strong-field regime) to saturate PT-3 signal reveals the most profound dependence on t 12 .
even these atoms. These saturated atoms produce ex- First we analyze the case of zero delay time, t12 = 0.
po..entially small contributions to the mean grating am- The behavior of the correlation function T(tP) depends
plitude. On the other hand, for equal pulse amplitudes, implicitly on the spatial dependence of the incident fields,
atoms near the interference minima see an arbitrarily which in turn is represented by the total Rabi frequency
small effective total field; these atoms are not saturated. f(t,)). As the pulses are assumed to be fully correlated,
As a result, the mean amplitude p(t,;O) of the spatial f(t,)) can be represented in the form
population grating has narrow groves in the vicinity of
the minima 4)z(2m + l)r (m =0,± I ... ) of the interfer- f(t,40)=fje -' 4 +f 2

ence fringes. I a(0 1/2
If the nth-order population grating p(n)(tp;8) is written !fl(t)! exp i[+argfj(] (7.2)

as the sum of the constant and stochastic contributions, a,
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where intensities (aa,,, >>amin), and (2) pulses with nearly equal
intensities (aj=a2). In the first case one can see from
Fig. I I(a) that the spatial modulation of the interference

and fringes is small compared with its average amplitude.
Hence, one can expect the behavior of the correlation

tan0= asin 2 function T(tp) to be almost identical for the "maxima"
ajcos4)+(aa 2 ) 2 " and "minima" subensembles. In the second case the

"minima" subensemble is driven by a considerably weak-
The phase 0 does not depend on time and thus cannot er field than the "maxima" one [see Fig. I 1(b)]; this can

affect the evolution of atomic population, while argf1 (t) result in different contributions to T(tP) from the two
is the same for all atoms. Thus, all the essential depen- subensembles.
dence on 0 is contained only in the absolute value of the If the pulses have very different intensities, condition
Rabi frequency Jf(t,,), which in turn represents a fixed (7.4) takes the form (8=6)
spatial grating (or interference fringes) proportional to
a(0)), whose amplitude fluctuates in time according to amnp

fflfl(COS -cos 4 )2 <l (7.8)
If, (). 3The larger the difference in If(, k)[ and [f(t,d,)I for

The fact that expression (7.8) is not changed under the
atoms characterized by 4) and 4, the faster is the decorre- substitution 0 4,+iT; &-.+ir proves the behavior of
lation of their populations. A difference in detunings (ve- T(tp ) to be identical for the two subensembles. Suppose
locities) leads to the same decorrelation. Namely, for
a(o)=za(), only those atoms which satisfy the condition
[see Eq. (C8)]

-(/:O- a Wt+ < 1 (7.4) z2 m -----P 3a(0)) 2 .*

contribute to the signal. At t12=0, however, the

asymmetrical part of the signal vanishes, and only corre- 12
lations between atoms with equal velocities are impor- . 5had,3 ...... t> T C
tant. Thus, one need consider only the first term in Eq. ........ r .........
(7.4) when t12 =0.

For a(o)) a($), it follows from Eq. (7.3) one needs to
have coszcos$. Consequently, the population correla- Ilf2 .. -

tions can be of two types. For a given atom, character- ,,,- .
ized by "location" 4)kd'r( -r/2 <, < 3r/2), the first (b)
type of correlation occurs with a neighboring atom hav-
ing t12 >' T.

S.........=..'.... ...........

(7.5) 0 d. T **

The second type of correlation arises for an atom located
at 0 and another one at

2 2..

2 2 (7.6) 0 X

These correlations are illustrated qualitatively in Fig. 11. 0 =W .[

According to Eqs. (7.5) and (7.6), all atoms are naturally
separated into two subensembles: those which are closer FIG. 11. Schematic representation of the two types of popu-
to maxima - rr/2: < < ir/2 or minima 7r/25 ) < 3r/2 of lation correlations for t12 =0 for different excitation pulses. (a)
the interference fringes, respectively. The atomic popula- The pulses are strong, fully correlated, and have very different
tions are correlated only within these subensembles, intensities. Rectangles depict the range of correlations of the
which therefore contribute to the PT-3 signal indepen- first type, while arrows depict the correlations of the second
dently: type. The solid curve represents the averaged interference

fringes (tf(ti'F), while the dashed curves depict nonaveraged
I' W"max nn , (7.7) interference fringes If(t)lI for two different times. The effective

detuning, which arises at 12:#0, is shown by the dotted curve.
where max and min designate "maxima" and "minima" (b) The pulses have equal intensities. All other conditions and
subensembles, respectively. notations are the same as in (a). (c) The pulses are noncorrrlat-

To continue the analysis, one must distinguish between ed; only the correlations of the first type exist, and the effective
two limiting cases, that of (1) pulses with very different detuning vanishes.
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an atom is located near an extremum of the interference phasing for atoms having equal detunings &=. First
fringes (04z0 or =ir1). Then, = ( holds for the both one notes that the additional detuning varies as sino (see
types of population correlations. Since Va(0) varies Fig. 11). This implies that correlations of the type 2 for
slowly near extrema, the amount of (cb-t) that can still atoms located at the slopes of the interference fringes are
contribute to T(t) is relatively large. According to Eq. destroyed for relatively small values of t12. For example,
(7.8) this range is given by for the atoms characterized by 0= -4=ir/2 and

6=21r- z:ir/2 the difference in additional detunings

0 - <a< m )ntp)-O25 <<l (7.9) [see Eq. (7.14)] is maximal, and the correlation of
their populations is already destroyed at

On the other hand, if an atom characterized by b is locat- t12zr"/amnrp )1/2 «712. For larger delay time and
ed at a slope of the interference fringes, then the correla- pulses having very different intensities, the range (th-4)
tions of the different types are well separated in space, that contributes to the signal for the atoms located in the
and only the atoms satistying vicinity of the extrema of the interference fringes de-

)- <(a t-0.5 <<1 creases from (amintp ) - 0 25 to (amintp) - °5 as t, 2 variesfrom 0 to t1 2 >>r12. For t1 2 > re
2 the range (0-4) which

(first type of correlations) (7.10) contributes to the signal is the same for atoms at the ex-

and trema and the slopes of the interference fringes (in con-
trast to the situation at t12 =0). This result also holds for

(h+ < (amntp )- 0 5<<l atoms near the maxima in the case of equal pulse intensi-
ties. However, the range (45-4) of the correlations for

10+i-2ri <(ctm,nt)°<<l , (7.11) the atoms near the minima (0i =r) shrinks from the value

of correlations) (7.13) to an even smaller value cos(th/2)(atp )-0.5.
In general, when athb)=a(b), the detuning term

can contribute to the signal. The ranges (7.10) and (7.11) [second term of Eq. (7.14)] leads to eventual decorrelation
are much smaller than (7.9). for t12 f0. However, for certain unequal detunings 8=*6,

For pulses with equal intensities (a I = a 2 =a), condi- this decorrelation can be significantly reduced. If
tion (7.4) for atoms to contribute is

4at CA o -had,3(0)-h ad.3 (4b) (7.15)
3 cos- -cos - < I . (7.12)

2 2 the second term of Eq. (7.14) vanishes and the correlation

Comparing Eqs. (7.8) and (7.12), one finds that for the of the populations coincides with that for the atoms with
"maxima" subensemble, the behavior of correlations is equal detunings at t,2=0. For detunings 86# which

not changed significantly compared to the case satisfy (7.15), there is always a contribution to the

anax >> am. However, for the "minima" subensemble, asymmetrical part of the signal.

that is, for an atom located close to a minimum of the in- The analysis of the population correlations presented

terference fringes ('bfrr), the amount of )t- ) that can above and the representation of the atomic ensemble as a

still lead to a contribution to T(tp) decreases drastically. sum of "maxima" and "minima" subensembles helps to

According to Eq. (7.12), this range is given by explain the dependence of the signal on time delay t12
and grating order N. First, using Eq. (7.7), one can show

th-h <(atp) < 1 , (7.13) that, owing to Eqs. (2.19), (2.23), and (6.9), the total PT-3
signals emitted in all directions by these subensembles areand does not differ from that of an atom located at a given by

slope of the interference fringes.

To consider what happens to the population correla-
tions when the pulses become time delayed (ti210), we W1..  = W ,, = , (7.16)
use the model developed in Sec. III, in which, for n

0<12 <<al-1 , the pulses can be still regarded as fully
overlapping and the Rabi frequency, f(t,Oi, is stili given such that the total signal satisfies
by Eq. (7.2). In this model, every two-level atom acquires
an additional detuning had.3(b)=Gt 2 )(a1 a21) sinO; W3_= (7.17)
consequently, the second term in Eq. (7.4) is modified, W111 -1 •

and the condition for atoms to contribute to T(tp) be-
comes The sum rules (7.16) and (7.17) are valid independent of
I _V a( )]2 the delay time or correlation properties of the pulses.

-a(&I1For any given delay time 112 and correlation parameter

[86+had,3(')-hd,3( j)12 tp 4b, one can regard W,",aX W,, ' , and Wil3 as some "dis-
+ [ 3 ad,) t< 1 . (7.14) tribution" functions of the signal intensity relative to N.

3a(4) Consequently, knowledge of W(, ,t 1 2 ) for a given n al-

The additional iA-dependent detuning alters the symme- lows one to draw conclusions about W, 3-(( 12 ) for other
tncal part of the signal since it results in an additional de- values of n.
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A. Pulses with very different intensities W(, 3t2 ==0)-W ( t12=0)=0.5 3W3 (t12=O)

In this case it has been shown that at t 1 2 =0 the behav-
ior of T(tp) in both ("maxima" and "minima") suben- where, according to Eqs. (2.23) and (2.19), WA3 1 is given
sembles is identical [see Fig. 12(a)], and thus by

-11 3)0 w',-n P2-r3r2df3/2 .P(p05P(p 8)onO (7.18)
412 /2 3/2

The correlation function appearing in Eq. (7.18) is always asymmetry of the "maxima" distribution is positive
positive, as is W Owing to the oscillatory behavior of [w,3 Max (t12)> -'i,,,max (t 12)], while that of the "minima"
cosn (46-4) for n -t0 the distribution W, 3 (t 12 =0) is a is negative, such that they are exactly compensated in the
smoothly decreasing symmetrical function of n, charac- joint "distribution" W 3 (3 12), which is symmetrical rela-
terized by width no with no >> 1. tive to n (and 1,2 ).

For 112 >0 the two subensembles lead to the distribu- Some insight into W 3 '(t 12 ) can be obtained by first
tions Wr.ax-(t 2 ) and Mi, ("12) which acquire some considering W03 (t 1 2 ). In light of the discussion above
asymmetry [see Fig. 12(b) and Eq. (7.15)]. However, the about the destruction of correlations with increasing t12,

one finds that the signal W 3( 1 2 #0) < W 0 (0). When

t2 becomes larger than r , only the correlations of the
11"'"F "" I ,,,,,,,,,,,,,,,,,,,,,,, first type survive, and the signal WlV 

3 '(112) tends to its

minimum, W 3 ( o). Thus, the signal Wo3 (t1 2 ) exhibits(a) 1- i a peak of width r12 [see Figs. 8-10 and the discussion
that follows Eq. (6.43)].

- I To see the connection between W, '(Ti2 ) (n -0) and
ZW 3)(r12 ), one can use the fact that in the strong-field re-

gime the number no of the PT-3 signals of comparable in-
0.5 tensity is large, and owing to relation (7.17) can be ex-

z pressed as
C.,

~no(tl2) [ W ))(t12)]- (7.19)
I-

0 Since the signal W13' decreases with increasing t,, it fol-
-30 -20 -10 0 10 20 30 lows that no increases with increasing t1, (in the limit

Signal Order n al,2t 12 << 1 considered in this paper), i.e.,

1111F' .... 11 " l l111" "' ' 111111"1 "11 1 FFl l "F " no(0)=no(t12-0) <no( 0C )=n (t12 >>7 2 ). Now it is

" possible to get a qualitative understanding of the depen-
dence of the signal WQ1 with a given n on t,.. As t,2varies from 0 to t1, > 7.2 , no rises from n,,(O) to n(,( x

* • and the "distribution- function W'3 becomes wider and,
- consequently, lower in the center (small n) and higher at

0 \ the wings (large n) (see Fig. 12). For fixed n < n,(0). W
, .decreases with increasing t12, while for n > no( oc ), the05: signal W 31 increases with increasing tlj. Thus in the

Cn 00 former case there is a peak centered at t12 and in the
0,-" latter case a dip. In the intermediate range of n,

I n0 (0) < n < no( oo ), the signal first increases and then de-l-.

0 creases with increasing t12. For 112 > rl" the signal W,
-30 -20 -10 0 10 20 30 reaches the background value shown in Fig. 12(b). The

Signal Order n narrow dip in the central peak that can occur for fully

FIG. 12. Distribution of the signal intensity as a function of correlated pulses and small n can be traced to the fact

order N for delay time (a) t12 =0 and (b) t12 = r 2 0, the total that at =12=0 the contribution of the correlations of the

signal intensity W 3 ; +, the signal intensity W,,, 1 . correspond- second type to the signal is negative, and they are des-
ing to the "minima" ensemble; X, the signal intensity Wnai troyed on a time scale t12 << r,2 . For example, at 112 =0
corresponding to the "maxima" ensemble ( -W .. ,, this contribution to the first-order signal W1131 is charac-
+ W,..,). The pulses are fully correlated and have very terized by (0- ).ir and is negative as cos(o -b)= -I
different intensities: V= I, altI, 04, tp = l0 2, AoDi = 14. in Eq. (7.18). Since these correlations are destroyed as t 12



41 ' OPTICAL COHERENT TRANSIENTS INDUCED BY TIME-... 6211

varies from 0 to t12 =rl 2/(amintp)1 2 , this leads to the dip n,min(ti2)>n0,max(ti2) is satisfied for any t 12 [see Fig.
in the central peak having this width. 13(b)]. As a result. the signal of small order n is still

determined by the "maxima" distribution
B. Pulses with equal intensities [W,1(3)(t )W=W3

1 8), .(t 12 )] and has positive asymmetry,
while that of high order is determined by the "minima"

In Lhis case the behavior of T(tp) is different for the distribution and has negative asymmetry. When the
two subensembles even at t 12 =0 [see Fig. 11 (b)], and con- Doppler width is sufficiently large such thatse ue tl 3) - w3) i
sequently Wn max(tl2 )--A in (t1 =0). As these sig- 11/2
nals represent Fourier transforms (phase factor AD >> a
exp[in(o-$)]) of T(tp), and, as discussed previously, [7
the range of (0-) that contributes to the signal is much
narrower for the "minima" subensemble, it follows that condition (7.15) can be satisfied in the whole range of
the distribution W13). (t 2 =0) over n is much wider and $-q contributing to the signal, and the asymmetry be-
lower than WA3 ax(t 12 =O); that is, nlmin(ti2 0 ) comes most visible.lo a .( ,s i. 2 3()]. thence, nomin(t12 =0) In the opposite limiting case of noncorrelated pulses,>>no,.a(tl2=0) [see Fig. 13(a)]. Hence, W,,mx(t12-0)

and W,(, 12 =0) determines the signals of small and the position as well as the amplitude of interferenceW,,'n~ 2 0 determine varie sigal tim small Fi.I1andTerfrolh

high orders, respectively. As in the case of pulses with fringes varies in time [see Fig. 1l(c)]. Therefore only the
very different intensities, the distributions WA 3 i t, ) first type of the population correlations exists at t12=0.very diffeent intenities, th ditiui n., max -12)
and € Moreover, the additional detuning vanishs, and nothingmetry, respectively, as t12 increases. However, the changes for t 12 =0 as compared with the case of zero de-

asymmetrical parts of these signals are not canceled in lay tiWe. As a result, W 1
31(ti2)-W P(0) and does not

W. 3)(t 12 ). As t 2 tends from 0 to t 12 >>T.12, both "distri- vary with t12,

butions" become wider and lower, and the relation
C. Dephasing of two Bloch vectors

Up to now, we have been concerned with the signal as
" ' "1"' .... "1' ........ IIiI I '"'"'"IIIIIIIII""I," a function of t12 for fixed tp. One can also try to under-

(a)( stand the qualitative behavior of the correlation function
= a) T(tp) = (p3p3) as a function of tp for fixed t 12 . Explicit-

ly, T(tP)=expjXttpI/3 [see Eqs. (6.9) and (6.10)] and
- _ leads to all the results for the PT-3 signal discussed in
Z\ Sec. VI. This correlation function describes the relative

dephasing of the components P 3 and #3 of two Bloch vec-
0.5 tors, R and A, associated with two-level atoms having

Z different velocities and spatial positions, r and r', such
CI that

6#A and 0=0(r) 0(?)= . (7.20)

0
-30 -20 -10 0 10 20 30 To understand the origin of Eq. (6.9), we examine the ro-

Signal Order n tation of R and R using the model discussed in Sec. Ill.
We consider the excitation pulses to be fully overlapping
and take into account a nonzero delay time by introduc-

(b) ing an additional detuning had, 3(t 12,4) given by Eq.
-1'- (3.10). It follows from condition (7.20) that, generally

speaking, had,3:Ah'ad,. Hence, even if two atoms have
equal velocities, their effective detunings differ if they are
located at different spatial points. Moreover, these atoms
see different field amplitudes at different spatial locations.

0.5 First we consider the Bloch vector R. It rotates with
z the angular velocity H given by

H= Y , (7.21)
0 -(+hd )
-30 -20 -10 0 t0 20 30 16+ d 3

Signal Order n [see Eq. (3.6)], where X and Y are the real and imaginary

FIG. 13. Distribution of the signal intensity as a function of parts of the Rabi frequency f(t) associated with a total
order n for different delay times: (a) -112=0; (b) -t 1 2=2 2. electric field, X +iY =-f(t), and the atom-field detun-
The fully correlated pulses (4)= 1) have nearly equal intensities ing 6 is modified by the addition of had,3. For the
(alt, = 105, a 2t = 100), and Abt, = 14. All the notations are the remainder of this section we assume that 4'r, = 1c ;i,j= 1,2.
same as in Fig. 12. Owing to the fluctuating character of the angular ve-
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locity 6omponents X and Y, the Bloch vertor R rotates the coherences, P I + iP 2 and #1 + i# 2, of two atoms. The
randomly and its tip undergoes a fast, random walk angle 0( is given by
movement over the sphere having unit radius. This sto-
chastic movement is superimposed on the free precession 00 = (argf(t))- (argf (t))
of the Bloch vector about the 3 axis with the constant an- and can be obtained by the minimization of the expres-
gular velocity -(8+ha,3). By moving from the "ab sion (IH-1ol, where H0 represents the vector H ro-
lute" reference frame, where the angular velocity is given

by H, into the reference frame that rotates about the 3 tated by the angle 00 about the 3 axis. Solving the equa-

axis with angular velocity -(8+ had,3), one transforms tion

away this regular rotation. In the new reference frame d (IH-l0o2)= 0  (7.28)
the component of the vector H along the 3 axis is zero do 0

and the X and Y components are modified. However, if
yields

(8+had,3)c << 1, (7.22)
a Isin( b- 0 )+a 12(sin -sinO)

the modification of X and Y can be neglected. In the fol- tan0 = o (7.29)
lowing discussion the analysis of the rotation of the vec- a cos(Ot )+a 2 +a 12(COS46COSO)
tor R is carried out with respect to the rotating reference Only after the Bloch vector R and its angular velocity
frame. vector A are rotated by the angle 00, given by Eq. (7.29),

During time interval r,, X, and Y can be considered as about the 3 axis, which is when the rotations
constant, and the Bloch vector R deviates from its initial
position R(t) by a small angle R 00; H , H0o

X(r )-"(X2 + y 2 ))/, c << 1. (7.23) are fulfilled, can one say that the remaining divergence of

The rotation occurring within the next interval of dura- the trajectories of the Bloch vectors represents the pro-

tion rc is independent of any previous one. According to cess of their relative dephasing. R and 1. whose

the random walk model, after m such rotations, at time

t I =m -r the Bloch vector R(t + t ) deviates from R(t) by tips follow close trajectories, since it is only these atoms

an angle X(t I ) whose mean square is for which the relative dephasing is sufficiently small for
time t =tP to contribute appreciably to the signal. In the

(X'(t) ) m (X2 (-r), 2a(O)t1 . (7.24) strong-field regime the necessary condition for a slow rel-

From Eq. (7.24) one can see that the Bloch vector loses ative dephasing of the Bloch vector is

memory of its initial conditions ac(d,)-() . (7.30)

R(O)=(0,O, 1) (7.25) Condition (7.30) implies that the two considered atoms

in a time period of order [a(0)_, when it has rotated by are at positions where the intensities of the interference

an angle of order unity" (see Fig. 14). The criterion fringes are nearly equal. At time -[a()

(7.23) of the random walk model at the same time justifies =[a( ]1<< tP when conditions (7.26) and (7.27) are al-

application of the decorrelation approximation in solving ready satisfied, but the relative dephasing is still very

the Bloch equations (2.10), and leads to the exact solution small, the correlation function T(t) takes the form

(5.3) for (P3). For t >[a(0)] I , the position of the T(a-')=(p,3)=(p3)=( )3)- (7.31)
Bloch vector can be regarded as random. For such times,
the mean square values of its components are equal, For a- <t <:tP, however, the rotation and, consequently,
namely the process of dephasing of the Bloch vectors continues.

As a result, T(t) slowly decreases from and tends to-
(P--2 3p 3 t > [a(0)]- (7..'6) wards 0. The question we address is as follows: What is

The second Bloch vector R has the same initial posi- the speed of this process and what is its origin?

tion (7.25) and undergoes a similar rotation that results in By simple geometrical consideration one can show that
in the strong-field regime the correlation function T(tP)

S= 2 = ( (7.27) is expressed in terms of an internal product of the Bloch

for times t > [a()]-'. vectors (R-l) as

To start the analysis of the relative dephasing of R and T(t )=-L((R.R)) . (7.32)
ft, we first return to the "absolute ' reference frame. Be-
cause HfI , the tip of the vector P, follows a trajectory Equation (7.32) implies that it is convenient to analyze
that differs from that of the vector R. To find the relative the relative dephasing of the Bloch vectors in a reference
dephasing of the Bloch vectors induced by fluctuations, frame which we call the "R" frame, tied to the vector R,
one first has to eliminate any possible constant angle 60 rather than in the "absolute" frame where both of the
between their projections on the plane defined by the axes vectors are rotating. In the absolute frame each of the
I and 2. This angles does not affect the populations P3 three axes of the R frame rotates with the angular veloci-
and P3 and leads only to the constant phase shift between ty H and at t=0 coincides with a corresponding axis of
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the absolute frame, that is, T(tP)=-1(PR3) (7.35)

MI=[HM,]; IM, 2=l , where (AR) is the average third component of RkR.
(7.33) Thus, the two-atom correlation function in the absolute

mji(O)= bj1, j,i = 1,2,3 ,frame is now expressed in terms of the averaged com-

where the unit vector M i  with coordinates ponent of the single Bloch vector in the R frame. Rota-

(m I i, M 2i M 3i ) determines direction of the i axis of the R tion of this vector takes the form

frame at time t. All three vectors M 1 , 2, 3 undergo random
rotation, remaining perpendicular to each other (see Fig. RR =[HR IR ]; HR = (I - H)R • (7.36)
14). It has been shown 44 that for t>>[a(0)] -' their
coordinates have the following correlations:

According to Eq. (7.33), the components ShR, of the vec-
(mji(t)m1 ~it r)) 3 tor 8HR are given by

ja4IIifj 1,
Xe 2a(O)Irl ifj =3 ,m(7.34) 8hmi I mji(fl°0-H)i (7.37)

where the quantity [a(0)] - 1 plays the role of a correla- and 5HR represents the vector (H 00 -H) that undergoes
tion time. some additional random rotation. This rotation is in-

The vector R coincides with the 3 axis M 3 of the R verse to that of the Bloch vector R in the absolute frame
frame and, in this frame, is given by RR =(0,0,1) at any and is described by characteristic time -[a(0)] - 1 [see
time, where the script R means that a vector is con- Eq. (7.34)]. All the components of the vector 8HR are
sidered in the R frame. Then, T(tp) given by Eq. (7.32) fluctuating quantities, and using Eqs. (7.37) and (7.34) one
transforms into obtains their correlation functions:

(8hRi(t)5hRj(t - ")) = 138ij ([f(t)-f 0o(t)][f*(t -'r)-f~o(t - +)] ( +(_ - ad,3 -had,3)' e -2a()1rb ,t >>a(o) . (7.38)

One can see from Eq. (7.38) that fluctuations of the angu- slightly in time [2a(0)]-1. As [2a(0)7 1 is the largest
lar velocity vector in the "R" frame are characterized by correlation time of the fluctuating vector 8HR, under this
two correlation times: the time r, of the Rabi frequency condition the random rotation of the vector RR can be
fluctuations and the time [2a(0)] - associated with ran- considered to be of the random walk character, and the
dom rotation of the component -(8_ +h ad,3 - had,3 )R of decorrelation approximation can be used in solving Eq.
the vector 5HR, the latter time being much larger than (7.36) [see discussion of Eq. (7.23)]. The third component
"c. of the vector (1RR is then given by
Since the dephasing of the Bloch vectors is assumed to oIs

be slow relative to their random rotation, P-R varies only (AR3(tP) e (7.39)

where
RO 40(): M30O 2

p =2fo' (hRi(t)6hRi(t- ))dr. (7.40)

2 ( t )  .MI(t)i=M"(t Mt The speed of dephasing u can be represented as

", , / ..- ,'R(t)
- jt=3/=f+I, (7.41)

where pf describes the dephasing induced by fast fluctua-
tions of 8 HR (correlation time r.), while p6 originates
from relatively slow fluctuations with correlation time

Mi(O) M2( [2a(0)] - 1. Using Eq. (7.38), for if one obtains

FIG. 14. The positions of the axes M1,2 3 of the "R" frame, 4f4= [(t)-foo][f
tied to the Bloch vector R (R--M3 ), for time t=0 (the solid ar- f [
rows), and after random rotation, for ta*0 (the dashed arrows). -f* (t -)] )dT . (7.42)
The initial position of the Bloch vector 11 coincides with R(0).
However, for time tz/60, owing to difference in angular veloci- Carrying out the averaging in Eq. (7.42) and using the ex-
ties, A(t) depicted by the dot-dashed arrow is not equal to R(t). pression (7.20) for 00 yields
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2 2a 1a2[ 12- cos( - )]- a 2(sin~b- sin )2 A. Weak-field regime

3[a 1 +a 2 +a 2(cos0+cos4)] In a weak-field regime (6.2) and under condition (8.1)
the strongest signal is of order n = ± 1. One can use Eq.
(2) to obtain the needed Fourier component in the form

The second part of,jis, is given by 2aa 2 7,tp

1.(8 +h -h,, ,)2fe2a(O)-rd T"- (tP )a12 p + (8.2)As==-- 3( - hd, 3 ad,3' 0 e 4 2

2(8- + G(t1 2 )aU2 (sino-sin )12  In the strong-relaxation limit, Eq. (2.23) is no longer val-
3[a 1+a 2+a 1 2(cos+cos)], (7.44) id, and the PT-3 signal must be obtained directly from

Eqs. (2.14) and (8.2). Integrating over 8± in Eq. (2.14),
where we take into account condition (7.30). one arrives at the signal

From Eqs. (7.35), (7.39), and (7.41) one finally obtains Kala
the correlation function T(t ) in the form ,.3

) K.a 2 
2+ K pa(8.3)P W ,n  = K o.a 2(p "+ 27 t , (8.3)

T (tp ) =-exp[ - (lf + )tp .(7.45)
where

Expression (745) coincides with (69), since (yf +/z6) [2y2 Yt V2
given by Eqs. (7.43) and (7.44) is equal to -X given by K0=exp 1-ef

Eq. (6.10). The part of X1 which is independent of 8- and I -e AD

G (t 12 ) coincides with j f, while the terms that depend on 4y2  (8.4)

these parameters are contained in it. K 1 =-- K 0 + -v27 .
Since we consider the limiting case where the relative 2 j AD

dephasing of the Bloch vectors is a slow process com- Similar to the signal in the weak-relaxation limit [see
pared with their random rotation, inequality Eq. (6.7)], the signal (8.3) does not depend on the delay

f,j<< 2a(O)tp, 2a( )tp (7.46) time. However, in contrast to that case, the first term in
Eq. (8.3), which depends on the correlation of the pulses

must be satisfied, a condition equivalent to Eq. (C5). and is proportional to the square of the mean amplitude
p(1 )(tp) of the population difference grating, can be much

VIII. QUANTITATIVE RESULTS larger than the second term proportional to ala2, which

IN A STRONG-RELAXATION LIMIT YrTp >> 1 is independent of this correlation and originates from the
stochastic part of the grating.

In this section we calculate the PT-3 signal under con-
ditions when relaxation plays an essential role in signal B. Moderate and strong-field regimes
formation. It is assumed that fa the intensity of the pulses increases so that

1y3>>tp -,(-t 12-tp)->>rY . (8.1) amaxtp l, the correlation function T(tp) is given by

The condition Y1(t 3 -t 2 -tp)<<l insures that the sig- -2xtp 81QI2 rytp
nal is not seriously attenuated in a time period between T(tp )=e I1+ 2 +2 + To, (8.5)
the second and the third pulses. At the same time, the 4 I
condition ytP >> 1 guarantees that relaxation of atomic where x and Q are defined in Eqs. (4.5) and (4.6) and we
coherence plays an essential role during the excitation neglect all the terms leading to minor contributions to
pulses. The latter condition can result from pressure the PT-3 signal. Using Eqs. (2.19), (2.14), and (8.5) one
broadening produced by a buffer gas. obtains the PT-3 signal

W3)e 2( +a 2 )tp K K tp I 2 2 2 2 g

-", e P KoI2() +  - -t. jajaln 1 1)+n-()+( 2 '212)()
1 Onb 2y, ~~ 2 J~ 1 ()1

+2a~2Il - ( lI, + ( l-2a12 (a 1 +a 2 )ln(g)[I,, (g)+I + l(4)]] +0 'i (8.6)

where I, is a modified Bessel function and g=2a 2tp. uations may occur, depending on the degree of the mutu-
The last term in Eq. (8.6), proportional to y/, is contrib- al correlation of the pulses and their intensities.
uted by the steady-state solution T0 , and should be taken If the pulses are almost fully correlated and have al-
into account only when the rest of the signal vanishes, most equal intensities (a1  a 2 za 12 =a), so that condi-

When the intensity of the pulses increases, so that a tion (6.52) is satisfied, the first term in Eq. (8.6) dom-
strong-field regime (6.8) is realized, two very different sit- inates, and the PT-3 signal is given by
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The _ z exp(--n2at e -2(a1 +a2-2a 2) tp  (7) The strongest signal occurs for orders n = ±1. Picking
-- 0=oex(n/a.)e-2a+a-.2' (8.7) up the terms proportional to exp[i(o-j)] and integrat-

47rat,, ing over 8± in Eq. (2.14), one finds the PT-3 signal
The signal (8.7) does not exhibit any dependence on delay r2 r K 0 a22  2Klata 2
time t12 and for n << vat it represents a plateau of W3) +. (+) J (8.12)
height (41Tat,) - 1, provided at 12 <<l. The PT-3 signal ±1 (al+a 2 )2 (a,+a 2 )2  (a t (

(8.7) is completely determined by the mean amplitude of which exhibits no dependence on delay time.the population grating, sincewhhehiisndpneceodlatm.
However, when the pulses become very strong,

W 3) = Kop 2 (n) . (8.8)

In contrast with the results in a weak-relaxation limit (see
discussion at the end of Sec. VI), when ytt >> 1, the sto- one has

chastic contribution to the population grating is 2

effectively suppressed, while the mean amplitude is not T(tp=T o- + If . (8.14)
effected by the relaxation of atomic coherence. Transi- y
tion from the weak-relaxation limit to the strong- It is shown below that in the regime (8.13), which can be

Felaxio non ed show or corree p s winterpreted as a strong-field regime in a strong-relaxation
For noncorrelated pulses or correlated pulses with very limit, the correlation function (8.14) leads to the PT-3 sig-

different intensities, condition nal whose dependence on delay time resembles very much

a I+a 2 >>2a 2,tp1 (8.9) that in a strong-field regime in a weak-relaxation limit.

is satisfied, and the terms which are proportional to K0  Integrating over 0- in Eq. (2.19) and over 5± in Eq.

and K, in Eq. (8.6) become exponentially small. In the (2.14) yields

limit (8.9), which we examine for the remainder of this 2Koy2

section, the signal is solely determined by the contribu- W.( 3)=

tion from the steady-state solution To. Ty,(a 1 +a 2 )

For moderate field intensities X for/2 II+Y- I-[(l+ 2 1+Y )2 1] 2 n do ,

- «a,«'(81)0vI+2Y
tp <<a~x<<(8(8.1)

one can approximate

T- 2  2a1 2  where

TOtP)_T o _-  /_I _ a 11 (cos0+cos_) y=12[l (__2)cos20+"2 = 1  1 1/2 (8.16)

+ a22 )2 COSoCOSo 1y (a 1+a2)y,(al+a 2) I

+ 8IQ2y, For one strong and one weak pulse,

(a 1 +a 2 )(4y 2+ 8) J amin <<yt <<amax ,

(8.11) it follows that Y << I in Eq. (8.15), so that the signal can

be approximated as

2KOy 2mi(3)-  amin [2-4( 1 -G 2)] . (8.17)

The signal (8.17) has the same dependence on the correla-
tion and delay times as the weak-relaxation limit signal
(6.14), but it is much weaker.

If both pulses are strong, that is if
(05

a ,a2 ', (8.18)
0

En 3 the main contribution to the integral in Eq. (8.15) comes

10 x3 from the regions where Y >l , and for n#*0, Eq. (8.15)
0 -202can be transformed into
-4 -2 tr 2 24 2Koy 1 2 exp( -n V/2/V/Y)

FIG. 15. Signals of order n= I vs t 2 /r," for different trans- 7ry,(a,+ 2 ) 0

verse relaxation parameter y,t. in the case of weak longitudinal (8.19)
relaxation: yItp =0.2. The fully correlated (41 = 1) pulses have
nearly equal intensities at, = 100, at, = 105, and ADtp = 14. The integral in Eq. (8.19) can be estimated by the same
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method used to approximate the integral in Eq. (D7). der condition (8.13) the PT-3 signal in the strong-
The strongest signal, characterized by small n, n <<71y, relaxation regime resembles that in the weak-relaxation
for strongly correlated pulses (1 -* << I ) exhibits a time, attenuated approximately by a factor
symmetrical peak centered at t 12 =0. The signal intensity 3V2Ko2
for tl2 

<  2 ' is given by <<I (8.24)

Koy 2y(a+a 2 )

Woi =  while the parameter 3(4y, ) - ' plays the role of the
ir(aj+a2 ),7i, effective pulse duration.

X In 21jy (8.20)
n [exp( -Z/2) + VZ +exp( -Z) ] ' IX. SUMMARY AND DISCUSSION

where
In this paper we have considered pulses with rectangu-

[ -( 1 -G 2 )] (8.21) lar envelopes; that is, rise and fall times t, and tf of the
n pulses have been assumed to be negligible:

If one compares Eqs. (8.20) and (6.29), one finds that the t, = tf =0. (9.1)
signals in the strong-relaxation and in the weak-
relaxation limits are similai, if >max amin (see Fig. 16). If one takes into account nonzero values of t, and tf, one

The peak has width It 121 ZT'
2 and for fully correlated sees that, for the symmetrical part of the signal, W s, gen-

pulses (4= 1), is approximately ln(i,,//n) times higher eralization of the results obtained in Sec. VI is straight-

than the background signal forward. Since W s is proportional to T(', - "(tp, 8, 8), one
can show that all the resj!ts for W s remain valid provid-

___3) KoJ_ ed that the substitution

Sir(a, +a2)7,., (8t.22 f_+ a t)at (9.2)

which would be obtained for non-correlated pulses i
(4)=0). is made. Thus, the results leading to nearly symmetrical

The signal of higher order n > q., >> 1, is given by signals can be still used. However, the asymmetrical part
of the signal may undergo serious charge, if

W(3) 2Ko 2 I n[4+(l-G 2 )] t,, tf > a-,ADl . In this case the effective range of detun-
ir(al +a2)7,77,exp - ings that can contribute to the signal narrows from AD to
"" , a2 )4i7/l min(t- i, tf 1i). As a result, the parameter D increases:

XI n(1-G2 ) (8.23) 3(aI+a 2 ) (al+a 2)max(t2 t )
471y D= 4A2 _Dt (9.3)

For fully correlated pulses the signal (8.23) exhibits a pro-
found dip centered at t, 2 =O, and for It,2 [ > 0 it coin- and asymmetry of the signal up to order n =a max(t, tf)

cides with the signal for noncorrelated pulses. is suppressed [see Eqs. (36) and (38)]. If max(t,,tf)_tp,
One can see from the results presented above, that un- signals of all orders become symmetrical.

It has been shown in Sec. VI that in a weak-relaxation
limit the PT-3 signal in many cases depends only weakly
on correlation properties of the pulses when ItI 2  >'2.
This effect, however, cannot be interpreted as a loss of
memory of the pulse correlations by the two-level atoms.
This memory is preserved, if aIt1l2 << 1, and can be re-
vealed under certain conditions, as in the case of the sig-

" nals of high orders induced by excitation pulses having
equal intensities. The origin of the (D independence of

0. __the PT-3 signal for lt121 >,rc can be related to the fact
. that the third pulse is weak and noncorrelated with the

S ._ofirst two. As a result, in the weak-relaxation and the
" x2o " strong-field limit, different velocity groups of atoms con-

X104 tribute to the signal independently [WA3  T(tp,8,8)]. It
o -2_ 0 2 4 will be shown elsewhere that in the case of two-pulse
-4 -2 02t/T transients, when the atoms with different velocities might

contribute to the signal coherently, the difference in the
FIG. 16. Signals of order n = I vs t12 /,r 

2 for different trans- signals for correlated and noncorrc 'ted pulses for
verse relaxation parameter y,tp and a small longitudinal relaxa- It,21 > r," can be significant.
tion parameter: yt, = 0.2. The fully correlated (4) = 1) pulses In summary, we have studied the three-pulse optical
have very different intensities altd,=100, a2t,--lO, and coherent transients induced by broad-bandwidth pulses.
ADt---- 14. Within the approximation of a small delay time between
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the first two excitation pulses, we have considered, transformation, an additional fluctuating detuning pa-
analytically and numerically, different values for the rameter appears in the Bloch equations, which is the only
pulse intensities, relaxation times, and Doppler width. It effect of the time delay of the pulses. We have interpret-
was shown that if the intensities of the excitation pulses ed the obtained results by using this model.
are high enough, stochastic spatial gratings of many or- If the relaxation cannot be neglected and the signal is
ders can be created in the population difference of two- detectable (T 2 < tp < T, ), the signal, induced by fully
level atoms and the signals with comparable energies correlated pulses with equal intensities, is much stronger
might be emitted in many directions. These signals, as than in all other cases and does not show any dependence
functions of the delay time, can vary significantly on the on delay time. If the intensities are different, the PT-3
time scale of the cross-correlation time T., 2 of the pulses, signal exhibits a profile which resembles that in a weak-
provided the relaxation processes in the atomic vapor are relaxation regime; however, the signal is much weaker.
negligible on this time scale. We predict that the signal The experiments performed on different atomic vapors
for order n <<(amintp )1/2 as a function of delay time ex- indicate that the PT-3 signal is very sensitive to the atom-
hibits a peak having width It12 1- T'2. When the pulses ic level structure, which is usually much more complicat-
are strongly correlated and their intensities are not equal, ed than a two-level system. The only experiment,' 5 of
this peak has a very narrow dip at t12 =0 whose width is which we are aware, where the active atoms could be
much smaller than -12. The signals of higher order can realistically approximated as a two-level system, revealed
exhibit either a dip or a considerable negative asymmetry direct dependence of the signal on rc in the case when
depending on the Doppler width of the atomic ensemble one of the pulses was strong. Extension of this work to
and ratio of intensities of the excitation pulses. All these the case of two strong pulses would allow for a more
features occur for strongly correlated pulses, when complete test of our results.

amint p > 1.
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APPENDIX A: GENERAL EXPRESSION FOR THE PT-3 SIGNAL

The energy 1W.1 of the PT-3 signal radiated in the direction k3 + n kd under the influence of the third pulse that starts
at time t 3, t 3 =t12 +t 23, and has duration t 3, can be defined as' 2

_ C(A2 7r-1C,~AV1?A Ob~n(t ;b)) , ~(;W)dt dbd5 (Al1)
U1W. D f fDT JJ) .fUUJ [i 1 ( Pab

where C is a constant. The third pulse is weak, and therefore a component p b of the atomic coherence Pab satisfies the
equation

(n) • (n r• (n), 0 -- I
t 
-O

Pab= -YtI + f3P3 (t)e , (A2)

,A here

Pab(r)
=  ,pabe i(k3 + nk 3=)r, f Iabh-t' 3(t) . (A3)

I

Substituting the solution of Eq. (A2) into Eq. (Al), one has

'1W2'3  C ( a IT 'If f 0A)W AA
Dx X I fodtfodt' fodt"(f,( t' + t 3f3Tt"+ t3)

X e _ Y / ( 1 13 - t °o + t ' + t ") ( i 6 + Y , )( I - I ' ) - - i + y , )( I - r "

Xp (t 8)p(3 _n(1,6)) d~6(A4)

Since the third pulse is not correlated with the first two excitation pulses, averaging in Eq. (A4) can be carried out sepa-
rately for f 3 (t'+t3 V3l'(t"+t 3 ) and P3 )(t-;8")p (t°;6). Using the approximation of 8-correlated fluctuations for the
third pulse,

(f 3(t'+ t3 )f 3 t + 3) c 3 ( ' - " (A 5)
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where 0 < t', t" < t 3,, and a 3 ( If 3  C , and integrating over t ", t, and t' in Eq. (A4), one finally gets the expression

1 3 . =C(2y r4r)-la3(1 -e -2t3p)e -2yt3-t°, f f 2 - (A6)

Introducing W 3
) by the relation

W",3)= [ CV11a3l 1-e -2y"3p )]-',..Ae 2y, 13- ',°, ,3) A7

one obtains Eq. (2.14).

APPENDIX B: EXPRESSION FOR V" -' )(t) (aj +a 2 -2a 12)tp 1 , (C4)

IN A WEAK-FIELD REGIME the regions in the plane (0,$) that satisfy requirement

In a weak-field regime (C3) are defined by condition

al,a 2 << max[t.- ',min(-yj,-y,)] (B 1) V/y,8f <<x .(C5)

perturbation theory can be applied in Eqs. (4.1)-(4.3). Then the roots of Eq. (C2) are given by
This is more convenient than taking the weak-field limit 2 (y +5')
of the general solution (5.4). The population gratings of -= - 3

order ±1 dominate the process and lead to the signals of 3x (C6)
equal intensity. Iterating Eqs. (4.1)-(4.3) twice yields X2 " -X, X3 Z -3x

2

T(t; 1,-I ) 2( l -e 2,2 with T, 2 3 being being equal to

Ye T, , I << 1,T 3  2 (C7)

4- "2 e- 2 a t i'-2 1 ( - ')-2y('-t") 
3

0 0 The root X, is much smaller than the other two; under

Xcos6_(t'-t")dt'dt" condition (C4) it follows that xtP >> 1, and only the term
having index X1 on the right-hand side of Eq. (CI) can

(B2) provide a contribution which is not exponentially small.

In a weak-relaxation limit (6.1), one obtains Eq. (6.3). In Taking into account Eqs. (C6) and (C7) yields

the case of strong transverse relaxation (8.1), Eq. (B2) 2(y +8)tp
leads to Eq. (8.2). T(tp )=Texp 3  (C8)

If condition (C5) is violated, the difference between the
exact solution (CI) and the approximate solution T(tp)

APPENDIX C: EXPRESSION FOR T (t) given by Eq. (C8) is exponentially small. Thus, one can
IN A WEAK-RELAXATION LIMIt use Eq. (C8) for any y, 8f, and x.

IN A STRONG-FIELD REGIME If the pulses are fully correlated and have almost equal

In a weak-relaxation limit (6.1) the solution (5.4) is intensities, i.e.,

given by (aI+ a 2 --2al 2 )tp <1 , ('9)

T(tp) =  e PT , (Cl) condition (C5) is violated for the atoms situated close to
i=1 the minima of the interference fringes, the regions for

where the exponents X.A,2, 3 are the roots of the equation which the field is weak. Consequently, for

M(+x)(?,+3x) = -2y(X+x)-8}(X+2x). (C2) 1f + l 0±ir±r << -<<I1 (CIO)

At time t P, only those atoms whose Bloch vectors have [(aI +a2)tp ]1/2

not dephased contribute to the signal. In the weak-
relaxation limit, the main contributions to the integral Equation (C8) is not valid. Despite this fact we are still
(2.19) come from those regions , where solution (CI) be able to use Eq. (C8) since the contribution to the PT-3
is not exponentially small, that is, where at least one of signal from these regions is of order of [(a 1 + a 2 )tp]-
the indexes ;Li satisfies the condition and can be neglected.

kit;, <<I (C) Hence we may conclude that in a strong-field regime
the signal is governed by the term (C8) alone. Taking

If the pulses are not fully correlated or their intensities into account expressions (4.5), (4.7), and (5.7), one gets
are not very close to each other, i.e., if Eqs. (6.9)-(6. 10) of the text.
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APPENDIX D: CALCULATION OF Wv' IN A STRONG-FIELD REGIME

Using the symmetry of Eq. (6.10) under the permutations

4-*-+21rm; m =0,±l....

we can rewrite Eq. (2.19) as

fo+ r/2 T(t )e-2in#-d4- (D1)

with
T(tp; 8_ 1= exp[ -2tp (4 sin 20_ a a 2 -  G 1-2( t12 )]a 22COS20 + }

+62 +4&_G(t 1 2 )al 2 sincos#+ )[3(a 1+a 2+2al2coscos + )]- . (D2)

In order to obtain the analytical expressions for the PT-3 signal with two strong pulses, one substitutes (DI) in Eq.
(2.23) and carries out the 8- integration to obtain

W 3)= WS + WAS 1 (D3)

with symmetrical, W s , and asymmetrical, WAS, parts of the signal given by

_ = fode -bcos2no- , (D4)

WAS = , (I)

where erf is an error function and

V'2G 1 sin,_cos,+
a (1 +v' fcos4_cos + )[ 1 +D(I +V4/ cos,cos,+ )]10.5

2172sin 20 _ ( 1 - ocos 2 _ )(D6)
I + V4;fl cos_ -cos + '

4ala2tp 1/2 > = (l-G 2 ), 2(aja 2)1/ 2 <,1, 3(aI+a 2 )
1 3(a 1 +a, 2 ) al+a2 4A tp

Using the fact that 1 >> 1, one can analytically carry out the 0 - integration in Eq. (D4) provided n#0. Using these
conditions, the approximation sin - =-0 -, cos_ = 1 in expressions (D6) for a arid b, and setting the upper integration

\ limit equal to oo, we carry out the integration over 4,_ in Eq. (D4) to obtain

W 1 + +V~flcoso + e/2 n (l+Vft cos4, + do+~ . (137)
317irV"2 ' 1 - 0 cos 24+ 21 2( 1 -4 0COS 2 +)

If, in addition, the inequality

(-4 0 )1 2 > 1 (DS)

is satisfied, it is also possible to carry out similar integration in Eq. (D5) that yields

1 ~ I'l+~flos,~112 f 2 (l +Vfcs)1
WAS = =- j I J,0O2+ ep 272l-(OO2 + erf(X)d4+ ,(139)

311TV'21r I - 0cos 24,+ 212( 1 - oS 2 k+)

where

GnV/cos0+ f (1-4cos20,+) -0.5

X ~~~~~~ ~ 771( -,'o~+ D+I- 4DoCOS20b + )(I1 + V/;jj# cosob + (110

1. Weak mutual correlation of the pulses

Assuming that

l+_j_ I + n <<I (Dl)
4 1 7 (a I+ a2)tp
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it follows that

n
2

fl,4b0 << 1+-_!!- ;X<<I

and that inequality (D8) is valid. Extracting the terms of zero, first, and second orders in V4) in the integrals (D7) and

(D9) one finds

W.e3 2 , /2.2  11I+ V;cosb [flO n~!~ 1+ Gn
2 [n 2  71-D+

2 77 [ 2 8 71 2~ 1+ V21 (l+D) lI-D 172+cosv+ 1- --1- +, 24fGn __ 1 1 db+ .

(D12)

Carrying out the integration in (D 12), one recovers Eq. (6.19).

2. Strongly correlated pulses

In this case 1- 0 << 1, and (1 -- ) is treated as a small parameter. The remainder of this Appendix is devoted to a

consideration of this limit.
a. Signals of order n <<-. First we consider signals, characterized by small n, n <<7. To estimate the symmetrical

part of the signal, W s, from Eq. (D7), we observe that the expression under the integral sign is not exponentially small

only ify + ir -y , where y± can be expressed as

n I n 0-exp [ - 007_ I<< 1 (D13)71 / ( 1±-V-,bv/)n2 I

Taking into account only the contributions which are not exponentially small, one has

Ws-- I +f 1Vflcos + 1/2d - -1+ i-q 1/2 do+
3771TV/21Tr 0o jlI )ocol20+4C)

1 -) os 1/ d (D14)

Expanding (1 +p';6 cosO+ )1/2 in terms offlv4 up to the fifth order in the first term of Eq. (D14) gives good accuracy I

even for = 1. In this limit the integrals reduce to

Ws 1 2 - (P02  5(2+4)o)4 F (40)f 2 5(l + )402 E(4 0 )
3 i 17rV2 192( 2  4 0  960)0

I ±00 In (+1+0)(D215)

where F and E are elliptic integrals of the first and second kind,43 respectively.

Under the assumption that (1 -(DO) << 1, one can use asymptotic expressions for the elliptical functions, and, taking

into account the fact that

4)fl2  5(2+4)O)'V4 12+ /6,)/
2- -(2 °(D2 (1- )I 2 +( -V -4)fl

/2 
, (D16)

4(0  1924)0

one can arrive at Eq. (6.30) of the text.
For t1 2 >>r

2 it follows that G= 1 and (D0=0, and thus y± =0. Although the accuracy of Eq. (DlS) is reasonably

good, one can use the more accurate expression (D14) to obtain the background value of Ws:

WS" 3ir 'rT v2 J+2U 1/ Ej 4a2 j(Dl7)WTjtV r)/ 1+ al+a2  a 1 +a 2 +2a 12 I (

The background signal depends only weakly on the correlation parameter (, and, independent of 4), differs by at most

10% from the value
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which would be obtained for noncorrelated pulses (4=0). For amin<<am x one obtains Eq. (6.37), while for
aI =a 2; 4D= 1, Eq. (D17) leads to the symmetrical part of Eq. (6.42).

To estimate the asymmetrical part of the signal, WAS, we represent it in the form

WAS=A+-A._ , (D18)

where, according to Eq. (D5), A ± is given by
2i nr/ ,/2 -b

A±= foE do+ fOf' d0-e _±sin(2nO_)erf(ia±) , (D19)

and a±a (±[3),b± b(±13). It is not difficult to show that A± >0, and thus the signal has a positive asymmetry,
when A + > A -, and a negative one in the opposite case.

If (1 -00)7j< 1, one has to evaluate this exact expression. However, if (1 -Do)7> 1, one can use Eq. (D9) to approx-
imate it as

A ± 1 -- 10cos0+ erf(X±)d0+ , (D20)
3rnTV21 'y± (I - 0 coS 2 0 +

where X± =X(±fl).
In the case of small order n, n <<71, which is considered now, it is shown below that WAs < Ws; however, there are

certain cases where WAs qualitatively modifies the signal. Such a modification can occur for 3= 1, corresponding to
equal intensities of the pulses.

First we estimate WAs for
(I 1 - O)0) 2 < 1 , (1321)

using the exact equation (D19). In the limit (D2 1),

erf(ia)=-2i(a + _03)

and, expanding exp( -b) up to the first order in the parameter ( 1 - o)/ 2, one finds
4 ff/2 ~s0-f/s 2/ 2 sin20-sin2 0+ 1

A± -34 /2do+ /2 doexp 2 2sn2 0 sin(2n_)

0± s 2 J 7jsin_ cos0+

S(l±v /cos4_ cos4+ )[1 +D( 1±V cosocos + )] .5

+ 2V2G 713sin30_ cos 30+
( 1 ± cos0_ coso + )3[ 1 +D (1 ±V$ cos -cos + )] 0.5

× 3[l+D(1±V cos0_cos0+)] 1 + ) o0J• (D22)

Taking into account the fact that the main contribution to the integral (D22) comes from the region 0 < 4+ << 1, we first
integrate Eq. (D22) over 0+, putting sinO + =0, and coso+ = I to obtain

2G /2_d_- sin(2n_ )

3ir2 I +D(I ±V$ coso_)]"/

2172
sin

2 
0- G G2_ _

+ --V/$ c (0 3[l+D(±V'$ cosoo)] 1+4011 (D23)

When D >> 1, A ± -[max(n, VI )]- and leads to a negligibly small asymmetrical signal. Evaluating the integral (D23)
under the assumption that D << 1 and subtracting A - from A +, one obtains

WAS = 2n - ; 1D24)
3 r 2(4n e c e E 3

for (I --b) <- n '/n'2, one recovers Eq. (6.39).
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To estimate WAs when (1 -4o))72 > 1, one can use Eq. (D20) and calculate only A +, as A + >> A -. If

l <<( - 0 )72 <<n 2 , (D25)

then y + =n/1<< 1, and for the integration range y + i+1r/2 in Eq. (D20), it follows that << 1, and
sin2o + >>( I -4o). Consequently, A + takes the form

I -f/2 Gn cost+

31T7/ 2  + sin 3 4+/2V--- +

G (D26)
61rnV r(2D+ ) 'I

which leads to Eq. (6.40) for D << 1.
If (I - 4>0 ) 2 >> n 2, then y + =0; and X < 1 for y0 :5 0+, where

A= Gn exp [ 1 2( <<~o[ 1 V +(1 ~) 1-0011/2 (37
7[(1 -o)(1 +2D4o)] 2  n -n2 o

The main contribution to the integral (D20) comes from the region 0)+ < 1. Then one finds

A +- 3 I v/ l I o--¢o+ _ 2+/ dob+

+2Gn f ldo+ (1328)

+ + (- + o )[D(I- 0 0)+(I- V)++(.5+D0+o) 1( 2 5 (D28)

which can be integrated exactly. We present here the results in the most important cases. If D > 1,

2Gn (D29)
WAS A ="37r2,92(l1 -,D-)2v'

which is negligibly small. If D << 1, one arrives at

W 1 Yo + 2Gn In  2(1-(O)1/2 130)
As--3v7TV" (1_'o)1/2 V I ( 0)  yo+[y2+l±--- l_2D( 1o)]/2 ;D

for 4>= 1 Eq. (D30) reduces to Eq. (6.41).
b. Signals of higher order: n >>7 >>I 1. In this case to estimate the signal one can use Eq. (D9) to obtain WAS, as the

inequality (D8) is only violated for very small t12, where the variation of the signal is negligible.
For pulses with very different intensities,

amax>>amin>>tp , (D31)

one has

3<<1 . (D32)

If j9 is so small, that

fi_ «1, (D33)
7

the asymmetrical part of the signal is negligible. For its symmetrical part, Ws, the main contribution to the integral (7)
is from the region defined by (I - 0 cos 20+ )= 1, leading to the result

W 3)= 1 -- fovexp n2 (1 +(+ OCOS 20') do,
3,- -(V2ir 1 CO 2 +

3-1 exp (24VO12 -- -I , (1334)

where 1o is a modified Bessel function, which is Eq. (6.45).
If

0o >>p >> - 12 (D35)2 1
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the result (34) is still valid. However, if

n2'

the major contribution to the integrals (D7) and (D9), which can be used in this case, comes from the region
y = 7r - 0+ «<1, and the PT-3 signal is given by

where s is defined by Eq. (2.2 1).
The signial has a negative asymmetry ( A - > A + ),which can be large, when D 721n 2 < 1.
In the limiting case of equal pulse intensities, a I a2 or fl= 1, the region y = 1T -, «1 < provides the main contribu-

tion to the integrals (D7) and (D9) for any G. Then for G=0 one has

Av 3) - I f "exp n~ 2(l +y 2/4) Jdy

3nire(D7

For (I1- 40 O)n 2 /q 2 > 1, the signal Is given by

M()- I min Iv, '- 1)''l ep 2y2

x ~ I I-erf-- Gn-I I

3n ~I I 2(-4 )( -V-4 b0+2]J'" l-rf/2,(D

for 4V= 1, Eq. 0D38) reduces to Eq. (6.47).
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We analyze the macroscopic quantum jumps (sudden interruptions in the fluorescence on a mac-
roscopic time scale) that are produced when a pair of two-level atoms separated by a distance d is ir-
radiated by a strong laser having wavelength 40, with X0 >>d. Included in the analysis is the dipole-
dipole coupling of the atoms, the ac Stark effect, and the role played by a term that is present in the
atom-laser field interaction Hamiltonian when k-d=O (k is the wave vector of the laser field and d is
the vector connecting the two atoms). Our treatment is based on frequency-resolved delay func-
tions, an extension of a concept developed by Reynaud, Dalibard, and Cohen-Tannoudji [IEEE J.
Quantum Electron. 24, 1395 (1988)], which is shown to be useful to study frequency-resolved photon
statistics. As examples, we study the statistics of the fluorescence produced by the two-atom system
as well as those in the components of the fluorescent triplet produced by a single two-level atom.

I. INTRODUCTION fluorescence produced by the IE ) -, IS) -, IG) cascade
is interrupted for a time interval on the order of r A

When identical two-level atoms are separated by a dis- In this paper, we analyze the MQJ produced by this
tance d that is smaller than their resonant wavelength )L0, cooperative atomic effect. Recently, this effect was par-
cooperative decay phenomena can occur. Dicke' and tially incorporated into the problem "MQJ due to two
others2' 3 found that the exchange of photons between the three-level atoms" by Javanainen and Lewenstein. 15 We
two atoms produces new eigenstates with new decay extend their work by including effects relating to the en-
rates. Denoting the ground and excited states of atom i ergy shifts of states IS) and I A ) resulting from the
by lei ) and Igi ) (i = 1,2), these states are a triplet of atomic dipole-dipole interaction. Moreover, we allow for
symmetric states [IE)=ee2 ),IS)=(l/V2)(Ie1 g 2 ) an additional mixing of the symmetric and antisymmetric

+ Ige 2 ), IG ) = Ig1 g2 )), ard one antisymmetric state states produced by a term in the laser-field-atom interac-

(IA )=(l/V2)(Ie 1g 2 )-- Ige 2 )) ] . These states are tion Hamiltonian that is present when k-d#0 (k is the

shown in Fig. 1. When X 0>>d, the system, initially excit- wave vector of the laser field and d is the vector connect-

ed by an incoherent or a weak coherent field to state I E), ing the two atoms). The former effect is important be-

can decay o state IG) via state IS) with a rate rs--2F cause the IE)-.IS) and IS)-.IG) transitions are no

(r is the decay rate of a single atom). As can be seen longer resonant with a laser tuned to wo; the energy shift

from Fig. 1, a two-peaked fluorescence spectrum centered
at wo± V is produced when the system undergoes the
IE )- IS ),-IG) cascade.IE

Cooperative effects in resonance fluorescence produced---------- __----- E)
by the two-atom system when it is continuously excited
by a strong coherent laser was studied by Senitzky4 and
others.5 They searched for the existence of extra side- j
bands not piesent in the single-atom fluorescence spec- -

trum (Mollow triplet).6 An interpretation of the spec- V

trum was provided by Freedhoff.7 She calculated the R
fluorescence as arising from transitions between dressed IA)
states of the two-atom plus laser-field system and ob- )0

tained a spectrum containing seven peaks.L
In most treatments of the problem, the atoms have

been considered to be so close as to render the antisym- IG)
metric state optically inactive in the sense that the decay
rate rA f(.r the IE )kIA ) and IA ) IG) transitions is FIG. 1. Energy diagram for a two-ato,.. composite system.
set identically equal to zero. The decay rate rA is ap- When the atomic separation d <<4o=2frd/o, rs-2r,
proximately given by FA26(21rd/;LO)2 r/5(<< ).2 As r A2(21rd/Xo)2r/5, and V=(21rd/40 , 33r/4, where r is the
will be seen below, this small but finite decay rate can decay rate and coo is the resonant frequency of a single atom.
lead to macroscopic quantum jumps (MQJ). - 14 The ori- Transitions between states fE) and IG) (at rate R) are pro-
gin of the MQJ is the metastability of the antisymmetric duced by an incoherent pump field. State I A ) acts as a shelving
state I A ); once the system is shelved in this state the state in the problem of macroscopic quantum jumps.

41 453 © 1990 The American Physical Society
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V=(2 rd/X0 )- 33r/4 is much larger than r, in the same The solution for l1,(t) includes contributions from any

limit where state I A ) becomes metastable. The latter number of possible pathways leading to a final state pop-
effect is also important because it drastically alters the ulation I1i at time t. For example, suppose that the sys-
duration of the bright and dark periods. Our analysis is tern decays from state IA ) to state 1 G ) at time t =0 (a
based on so-called frequency-resolved delay functions (an BP begins at time t =0). The population 114 () obtained
extension of a concept introduced by Reynaud, Dalibard, by solving Eqs. (1) and (2) with the initial condition
Cohen-Tannoudji, and others)," - 13 which is shown to be H1G (0)= 1 includes contributions from pathways such as
very convenient in analyzing quantities such as t t2  tI  t2  t3  14

frequency-resolved photon statistics (FRPS). IG) - JE) -- A ), JG) - JE) -- A) - G) - JE)
The paper is organized as follows. In Sec. II, we as- - etc. (O~t,<t2""<t). In the IG)- lE)

sume an incoherent pumping of the IE ).-,.G ) transition 1.

and analyze the statistics of the bright and dark periods -- I A ) pathway, the first BP ends and the first DP be-
of the fluorescence. The FRPS in a bright period is cal- gins at time t 2 , with no further transition between times
culated in Sec. III utilizing the method developed in Sec. t 1 2 t3 1

II. In Sec. IV, we analyze the statistics of bright and 12 and t. In the IG)-*IE)-- A)-*IG) -- E)
dark periods for the case of strong coherent pumping '5

when k-d=0. In Sec. V, we consider the application of -- IA ) pathway, the second BP ends and the second DP

the method developed in Sec. IV to two problems in begins at time t =t,, with no further transition between

FRPS in a dressed-atom picture: fluorescence photons times t 5 and t. Note that in both pathways, any number

produced by a single two-level atom and by the two-atom of transitions I E ) -, IS ) -- I G ) -, I E ) is allowed before

system considered in this paper. Finally, in Sec. VI, we each transition to state I A ). In order to calculate the

consider a coupling of the antisymmetric state to the duration of a single BP we need to separate out the con-

symmetric states by the laser field when k-d=i0 and show tribution of the first decay to HA (t). To do this, we pre-

how this alters the statistics of the bright and dark tend that the system will never escape from state IA )
periods considered in Sec. IV. after the first IE ) -* A ) decay. This corresponds to set-

ting rAG =0 in Eq. (2), and solving Eq. (1) for HA(t) with
II. INCOHERENT PUMP the initial condition I'G( 0 )= 0 . We designate this popu-

We first consider the two-atom system irradiated by a lation with a prime, H'A(t), to distinguish from the true

strong incoherent pump which couples states IE) and population of state IA ). The crucial point in setting
IG) directly with rate R (see Fig. 1). It can be shown rAG =0 in Eq. (2) is that it in no way influences the dy-
that this is a good model when a reasonably strong broad- namics of the system for times before the first I E ) - I A )
band laser whose center is tuned to the transition fre- decay. A quantity W(E--. A /G;t) defined as the proba-
quency of each atom is used [see the argument below Eq. bility per unit time that, starting from state G ), the sys-
(28) in Sec. IV]. When rs, R >> r A this system exhibits tem decays to state I A ) for the first time at t, can be
two phases in its fluorescence: a bright period (BP), in found through
which repeated cycling through the channel d

IE ) -p IS) -* IG) produces many fluorescence photons, W(E-,A/G;t)=-tl'A(t) . (3)
and a dark period (DP), in which the system is shelved in

the metastable state I A ). A bright period begins (ends) When rs, R rA, a simple calculation using Eqs. (1),

when the system jumps from state I A ) to state IG ) (state (3), and (2) with rAG =0 yields

IE ) to state I A ) ). Therefore, to determine the probabil- rR (R -B)
ity distributions PB(r) or PD(r) of the duration -of a sin- W(E-- A /G;t)= 2B(R +Fs-B) exp[ -(R + Fs -B)t]

gle BP or DP, respectively, we must find the time delay
between uccessive transitions. The distribution PB(T) is FR (R +B)

detern. ,,ed by the delay between an I A ) -, I G) transi- 2B(R +rs+B)
tion and the next IE)--I A ) transition, while PD(-r) is Xexp[-(R +Fs+B)t]
determined by the delay between an I E)--,IA ) transi-
tion and the next I A ) -- IG ) transition. The calculation R F ,+ exp[-RF 4r/(3R+rs)],
starts with rate equations 3R +r s

d-1 i(t)-Hit) rij+ 1 l1j(t)jFj , (1) wheredt J J B=(R'-Rrs )112 .

where ll,(t) is the population of state 1i0 at time t and From Eq. (4), it follows that W(E- A/G;t) 0 in the
F, is the transition rate from state 1i) to state 1i) transient regime t <<R -1, reflecting the fact that it takes

(i,j = E,S, G, A), which can be written in matrix form as a time - R - for the system to be pumped from state
IG) to state IE ), from which it can then decay to state

o rs R r 4  I A In the third term of Eq. (4), the factor

0 o r. 0 R /(3R + Fs can be interpreted as the quasi-steady-state
r, = 0 0 0 (2) population (IT) that state IE) would have if a decay to

state I A ) were forbidden. The appearance of this factor
0 0 rA 0 is related to the fact that fast transitions among states
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IE), IS), and IG) drive their populations to the quasi- with state 12) metastable, exhibits BP and DP in its
steady-state values long before any IE )-A ) decay fluorescence: the BP involves transitions 5etween states
occurs. I I) and 13), and the DP is triggered by the rare excita-

The probability distribution function PB(i) for the tion 13) - 12). When the system is in a DP, the next BP
duration r of a single BP is equal to the probability that, will start following by the transition 2 ) - 3 ). A simple
starting from state IG ), the system will not decay to state calculation yields the quasi-steady-state population of
IA) until time -. Thus we can write PB(r) in terms of state 13) in a BP as nS=(R1+r)/(2R1+r). Since
W(E--+ A/G;t) as the next DP is triggered by the transition 13 -,12) with

P 8 ('r)=-fW(E- - AG;dt . (5) a rate r 32 =R 2, one finds

By using Eqs. (4) and (5), one sees immediately that both raIH(r 3 2 VI1(RI r)R 2 /(2RI +Ur 1)'

the first and the second terms in Eq. (4) do not contribute which is equal to (R 2 /2) -1 when R I >> r . A similar ar-
in the limit Fs,R >> r 4 ; in this limit, we find gument produces that ' =(R 2 +F2) 1, which reduces to

3R + R -1 when R 2 
> > r 2. These results agree with those that

P-(7)exp(-T1TB), TB, RrA (6) have been obtained previously.,o

where rB is the average duration of a single BP. The in- III. PHOTON STATISTICS IN A BRIGHT PERIOD
verse of the average duration of a single BP, rB 1, is sim-
ply equal to the quasi-steady-state population of state In this section, we study the FRPS in a BP by using the

E) [given by fl?=R/(3R + s )] multiplied by the rate method developed in the previous section. We calculate

F A for the IE )--.I A ) decay. As R /rs increases, -B de- the delay function D (WoEs,r), the probability distribution

creases, and eventually saturates at a value equal to describing the delay time r between successive emissions

3F- '. of a)ES photons (produced by the IE ) - IS ) decays) in a

In order to find the analogous probability function BP. As is seen in Fig. 1, these photons contribute to the

PD(r), we apply a similar method [setting rGE =0 in Eq. peak in the spectrum centered at coo- V and can be dis-

(2) and solving Eq. (1) for HlG(t) with the initial condition tinguished from ct)s photons (produced by the

I1 A (0)= I I to find IS ) -, IG ) transitions). In this section, we ignore the ex-
istence of state IA ) [all rA's in Eq. (2) are set equal

W(A -- G/A;t)=r A exp(- FAt) (7) to zero] because of the time scale involved
(Fs',R -' << r-1).

and We assume that an emission of a toES photon takes
P (r) 1-f A -- G/A •t)dt =exp( --/ ) place at time t = 0 leaving the system in state IS). In or-

' '7 der to emit the next photon at time 7-, the system decays

= I from state IS) to state IG ) at any instant t, is excited to
7D A (8) state I E) at any instant after t,t', and then undergoes an

IE)--- IS) decay at time -r (OSt <t'<_ -). Therefore the
where D is the average duration of a single dark period, delay function for the coes photon should be written in
Note that the ratio 'Br/or=(3R +Fs)/R -3 when
R >> rs. This result is larger than that obtained in a sin-
gle three-level atom (MQJ)8- 13 because of the additional
active level IS ) which is present in our problem. I)

In this section, we found W(E-A/G;t) and
W(A---+G/A ;t) in order to calculate PB(,r) or PD(r).
The beginning or ending of a BP or DP corresponds to a
distinctive decay I E ) -- IA) or IA) - IG ), respectively. 12)
Depending on the W function to be evaluated, we alter
Eq. (2) by setting some of the r's equal to zero. It is a 1  gi

generalization of a method developed by others." - 13 As I r
is shown in Sec. III, this approach is useful for calculat- R 'r

ing the frequency-resolved photon statistics. i/

In this problem and related problems, the quasi-
steady-state populations in each period determine the LL t 3)
probability distributions for the durations of a single BP

and DP. Specifically, it has the form Pi(r)=exp(--r/ri), FIG. 2. Energy-level scheme for a single three-level atom
where r, is the average duration of the period i (i =B or producing macroscopic quantum jumps. The transition be-
D). As a simple application of this, we consider the tween states I I) and 13) is strongly driven at rate R , while that
three-level system depicted in Fig. 2 which has been stud- between states 12) and 13) is weakly driven at rate R2 . The de-
ied extensively. 8- 13 In Fig. 2, R and R 2 represent in- cay rate from state II) to state 3) is r, and the decay rate from
coherent pumps and r, and r 2 represent spontaneous de- state 12) to state 13) is r 2. These rates satisfy the condition
cay rates. When R,Fr >> R 2,F 2, this three-level system, R,r>>R2,F 2. State 12) is the shelving state.
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terms of two types of W functions [W(S-,G/S;t) and straightforward calculation yields
W(E---+S/G;t)] as W(S-G/s;t) = rsexp(-rst) ,

D(oEs,T)= forW(S--G/S;t)W(E--S/G;r-t)dt , R rs r s C ,
(9) W(E--S/G;t)=- exp R---

where the function W(S-,G/S;t) is the probability per R r s  Fs c
unit time that, starting from state IS ), the system under- - exp -R- 2 2 
goes thefirst S ) -- IG ) transition at time t and the func- C exp
tion W(E--+S/G;t) is the probability per unit time that, (10)
starting from state IG ), the system is pumped up to state
IE) at any time t'(0 t'<t) and makes the first where

IE )--* IS ) transition at time t. The way of finding these =(4RI+r')12

W functions from Eq. (1) and a modified form of Eq. (2) is
the same as in Sec. I, and is not repeated here. A Substitution of Eq. (10) into Eq. (9) yields

F2sR [exp(-FsT")-exp[( -R -Fs/2-C/2)T"]

D (ES,r) C -R +rF/2-C/2 +(C 0 0 1)

where (C - -C)represents a term substituting - C for coherent state where Am2=ffT) can be explained by
C. This function clearly manifests an antibunching noting that D(WEs,r) is a more sharply peaked function
effect 16 [D(WEs,O)=O]. (It is impossible to emit the of r than the corresponding D function for a coherent
second toEs photon right after the first emission of a toEs state [D(r) = r exp(-r)] so that the time delay be-
photon.) In the limit of strong pumping R >> r s Eq. (11) tween successive photon emissions is approximately con-
reduces to a form stant. Thus we should detect roughly the same number

of photons in each time interval T. -Sub-Poissonian, Pois-
D(oEs,r)=rs[exp(-Fsr/2 )-exp(-Trs)] , (12) sonian, or super-Poissonian statistics are usually charac-

terized by Mandel's Q factor,1s which is defined in terms
which still exhibits antibunching. This can be expected t
from the cascade structure of the system.17 In other of' RT and AmT as

words, the system still takes a time rs I to decay out of Q=Am2/rT-1 , (16)
state IS) even though the pumping R is so strong that
the system can be rapidly pumped to state IE ) from state where

IG ).
A knowledge of the delay function D (WES,T) is enough < 0, sub-Poissonian

to determine the complete photon statistics. The quanti- Q =0, Poissonian (17)
ties IH and Amr, defined as the average number and the >0, super-Poissonian
dispersion of oES photons emitted during a time period
T, can be determined from 12  In our problem, we find, by using Eqs. (15) and (16), that

Fnr=T/f, Am-=iTA'r2 / 2 , (13) 4R(rs+R) 4Q----- (when R >>F s ) .(18)

where 7 and Ar 2 (the average and the dispersion of the (r. + 3R)' 9

delay time r between successive photon emissions) can be
calculated from Eq. (11) to be IV. COHERENT PUMP

3R +r s  5R 2 +2RF +F The incoherent pump field is now replaced by a strong
=_- , A r 2=  2R2(14) coherent pump (laser) field. The laser field is assumed to

R rs R rs be resonant with the transition frequency of each atom

It follows from Eqs. (13) and (14) that and is strong enough to saturate the two-photon

2 IG)- IE) transition. We use a dressed-atom ap-
RF s  2 i 5R1+2R5 s +) proach,19 not only because it can account for quantum-ffT = T -  AmT =-T (15)m s + 3R (Fs + 3R) 2  mechanical coherence effects such as the ac Stark split-

ting, but also because it can permit us to interpret the re-
where the factor R /(r s + 3R) can again be interpreted as suits in a relatively simple manner. In this picture, we
the quasi-steady-state population of state IE). Here, we first neglect the coupling of the two-atom system to the
find that Am T <HMT. and the photon statistics are sub- vacuum which is responsible for spontaneous emission.
Poissonian. This reduced fluctuation (as compared to a After the laser field is quantized, the dynamics of the to-
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tal system (two-atom plus the laser field) is governed by II, n)
the time-independent Hamiltonian

20

H= o(a +a +ata)
-

++ ) 12n >

13,n) _ 14,n>

+i4fg(e -ikd/a+ +eikd/2o )a +H.c. , (19) 1,,

where o +~ (a7) is the atomic raising (lowering) operator |
of the ith atom (i = 1,2) and a t(a) is the creation (annihi- r 21
lation) operator of the laser photons. The first line in Eq. r3
(19) represents the free energy of the atoms and the laser
field. The second line represents the atom-atom interac- r,4
tion which is responsible for the energy shifts V shown in
Fig. 1. The third line represents the atom-field dipole in-"0
teraction, with coupling constant g exp( T ik-d/2), where I 1 n-l i
±d/2 are the positions of the atoms and k is the wave
vector of the laser field. The eigenstates for the Hamil- I 2,n-1 )
tonian (19), called dressed states, are superpositions of I 3-n-
products of atomic states and field states. In this section, I 3, -n-1
we assume that k-d=0, so that the atom-field coupling is
identical for both atoms. When k-d=O, the coupling in FIG. 3. Energy levels of the dressed states Ia, n) for the
Eq. (19) involves only the symmetrical atomic states [i.e., two-atom plus laser field system. Adjacent multiplets are
only iig(or + O )a + H.c. appears]. In this case, the separated by the laser frequency COo. Decay rates r1 , from state
dressed states are found to be ?  I I,n ) to the lower lying states Ia,n - 1 ) (a = 1,2,3,4) are indi-

cose cated in the figure. When d << X 0, the decay rate r1 4 to state
ln )-=o0( E ,n -2) -- IG,n ))-i sinOIS,n - I 14,n - 1 ) (represented by a dashed arrow) is much smaller than

the decay rates to the other states (represented by solid arrows).

12,n L -(En -2) + IG,n )) ,
V/2 (20) Coupling the states to the vacuum produces states hav-

13,n =sin (IE n -2) -IG,n ))+i coselS,n - 1), ing bandwidths on the order of r s or rA, and results in
V2 the system's cascade down the quantum ladder in which

14,n)=IA,n-1, the decays between adjacent multiplets occur with rates
rs or FA. Each of these decays corresponds to the

with the corresponding eigenenergies creation of a fluorescence photon whose frequency is
El n =A[ nw 0 + [( V2 + 12 )1/2+ V1 determined by the energy separation between the dressed

2 R states, within the uncertainty given by the bandwidths. It

E 2 , n =(n w0 ) , is assumed that the states in a given multiplet do not
SV(21) overlap (secular approximation), 19 i.e.,E3 l, iC +[v 2 +54i 2  Vl]

(Ecn -En )/h>>2r( = r s >>FA) for all a,/O. (24)

where n (n = 1,2,... ) is the occupation number for the Under this condition, general relaxation theory dictates
laser field state and fIR is the usual Rabi frequency which that the cascade of the system can be described as a rate
can be written in terms of g and H1 (the average number of process among the dressed states
laser photons) as d 4

0,R =4gh 1/2 (22) dt- ,(t)= -=1, (t)

Note that we exploited the quasiclassical character of the 4+ I , t.+ (twn + 1) , (25)
laser field by evaluating 11R at if.19 The factors cos0 and 0=1 ,(5

0=I

sinG are functions of flR and V
(V2+ 2) - 1/2 where la,n(t) is the time-dependent population of the

R ( )/ 2 - v state I a, n ) and r(n) is the decay rate for the

2(V 2 +fl2 )I/z ' Ia, n -3, n - 1 ) (a,3 = 1,2,3,4) transition calculated

(V2+ l/2 .v 11/2 (23) from 20  _

sinO= 2( V2+ 0[2 ) /2  "~)= r I (a, n I(a -+ + a )l11, n - 1)12
1 R I a# 2 1-

Energy levels of these states are shown in Fig. 3 and form r A.
an infinite ladder of nearly degenerate four-state multi- +-( , nI(-a), n- 1) . (26)
plets. Adjacent multiplets are separated by the laser fre- 2

quency wo. Using Eqs. (20) and (26), we find r" in matrix form as
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-D 2  I-D D 2  +D Suppose that at time t =0 the system decays from state
2 s 4- Ds 2 Fs 4 14,n +1) to state Ia,n ) and the state Ia, n) is populatedwith a probability P, (a= 1,2,3) (the beginning of a BP).

_- 1 +DFs F, A The probability pa is the branching ratio4 s 42

r1n)= D2 I+D s 1-D 2  1-DrA Pa 3 ' (29)
a 2 4 2 4

a' [

1+D 2 1 -D 0 where the P's are given in Eq. (27). In order to obtain the4 A -A 4 probability describing the duration r of a single BP,

(27) PB (-r), we need to know when the next
Ifl,n')-14,n'-) (13=1, 2, or 3; n'<n) transition

where occurs. Analogous to Eq. (5), we can write PB(7') as
D =cos 2 -sin 20= - V/( V2 -2 )i/2 -3 1D'o' i pB ()=I-fodt 1 , P,,W(,6f-4/a;t)

and cos0 and sinO are given in Eq. (23). The rows and a,#= I
columns in matrix (27) are labeled according to Eq (26). 3

Again, we evaluated Pn0 at n =if, so that r(") is the same - dt X Pa W(
for any pair of adjacent multiplets. The first term in Eq.-0 af= | f 0
(26) represents decays among the atomic symmetrical where the function Wf)(f3-4/a;t) is the probability per
states and constitutes the 3X3 subblock in matrix (27), unit time that, starting from state ia,n ), the system
while the second term represents decays between the makes f successive decays excluding those of type
atomic symmetrical and antisymmetrical states and con- !,,n')--I4,n'-l) (#1,2,3; n >n'>n -f+l) be-
stitutes the I X 3 and 3 X I subblocks in matrix (27). tween times 0 and t, and then decays from state

As is seen from Eq. (27), there are 14 possible transi- [fJ,n -f) to state 14,n -f-l) (3=1, 2, or 3) for the
tions corresponding to the creation of photons with at first time at t (see Fig. 4). It is tempting to try to calcu-
most 13 different frequencies (the 1,n ) - 11,n -1) and late the function Wf)(f-4/a;t) by setting rl,')
13,n )- j3,n - I ) transitions create photons which have )A

the same frequency &)o). However, when the two atoms
are very close (d << Xo), six of the decays (those involving
decays to or from states 14, n )) are relatively improbable.
Consequently, one expects bright and dark periods in the -4,n+])
fluorescence owing to the metastable states 4,n ). A BP
corresponds to a fast cascade of the system among the t=0
short-lived states Ia,n) (a= 1,2,3). When a transition
I a,,n )--14,n - I) (a= 1, 2, or 3) occurs, this fast cas- "a
cade is interrupted and the BP ends; once a 1a, n)
14,n )-Ia,n -1)(a=1, 2, or 3) decay occurs, the next
BP starts.

The steady-state and quasi-steady-state populations
[obtained by setting r A =0 in Eq. (27)] of the dressed
states are found from Eq. (25) to be

I1S5a= n.,n 1'-L(a=1,2,3,4),

n =0 I 1,n-f )

Hiq= !15a l z (a=1,2,3) in a BP (28)
In=0

In this limit, we also see from Eq. (20) that in a BP the
quasi-steady-state populations of the bare atom states are 14,n-f-I)
equal IH o q,= _ (i =E,S,G, )]. The only ap-
proximation made leading to Eq. (28) is the secular ap- FIG. 4. The diagram shows a particular cascade which is
proximation (24), which can be written in terms of flR characterized by the function WP'(P3-4/a;t), defined as a
and V usinEq. (21) as V Fr<<'fR when V>>f1R. probability per unit time that, starting from state Ia,n ), the sys-
Therefore V <<fiR << V is the condition under which tem makes f successive decays excluding those of type
the pumping scheme considered in Sec II is valid. Note tt,n')-1 4,n'- I ) (ft=1,2,3; n > n'> n -f + i) between times
that when flR <<V, the IS )4-IG) transition is not ap- 0 and t, then decays from state 1[3,n -f) to state 14,n -f-I)
preciably driven by the laser field. (P= 1, 2, or 3). The initial and final transitions in the cascade

We now study the duration of a single BP and DP. correspond to those out of and into metastable states.
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W = 1,2,3; n > n' > n -f + 1) equal to zero in Eqs. (25) have a right to set these r's equal to zero because this
and (27). Tempting as it may be, this procedure leads to does not alter the dynamics of the system until the system
incorrect results since it modifies the dynamics of the sys- decays to states I v, n'- 1 0. The branching function is
tern !'t times before the transition to the shelving level of found to be
interest. For this purpose, we introduce a more elemen-
tary branching function wAV(t), which is defined as the d 4
probability per unit time that, starting from state lit,n'), w v(t) l-V,_(t) =r Vexp - I rt (31)
the system decays to state Iv, n'- 1 ) (Q,v= 1,2,3,4) at a A V'1=

time t. Since the branching function above involves only
transitions between adjacent multiplets, it can be calcu- In Eq. (31), the prime of the population denotes the
lated by the same method used in Sec. II. Terms in Eqs. modified population of state I v, n - 1 ) as before. We now
(25) and (27) corresponding to decays to states in the write W (fl3-,4/a;t) using Eq. (31) by considering all
(n'-2) multiplet are set equal to zero. Note that we still possible paths during f successive decays as

4 t t o
W'f)q(f-,4/a;t)= f, t f f fdtf - I . f " dt1[w,,(t )Weg(t 2 -t 1 ) ... w0(tf-tf _ I)wO4(t -t)] , (32)

where the summation excludes paths involving transi- [w.(s), when (,uv)#/-(',4), (p'=1,2,3)
tions lu,n')-,14,n'-lI) (IL=1,2,3; n n'>-n -f+l1). [-W1)u= 0 hn(zv=#,) #=,,) (33)

In order to proceed further, we first take the Laplace I-, when (pv)=(u',4), (I'=1,2,3)

transform of Eq. (32). This yields a simple product of f
functions of the form w, (s)= /(s + , ir'v °), each Note that we did not set r. 4 (u'= 1,2,3) equal to zero,
being the Laplace transform of Eq. (31). Now, the sum- which would alter matrix elements of W(s) correspond-
mation over all possible intermediate states can be done ing to allowed transitions. Thus we write Eq. (32) as
easily by treating the wpv(s) function as the component of
a matrix W(s). We see from Eqs. (27) and (31) that these
matrices are identical so that the final result is the matrix w~fl(f3--4/a;t)L7 ([Wy(s)])awi(s)l (34)
W(s) raised to the fth power. However, the matrix must
be modified to account for the fact that some of the paths where the symbol L- represents the inverse Laplace
are excluded from the summation. Thus we introduce a transform. Then, substitution of Eqs. (29) and (34) into
modified matrix, WEB(s) as Eq. (30) yields

3 r,

PB(r)= l- a 3 (35)
a,o= I r ,, 1f=0

c'=1

This formula is exact. However, in the limit rA <<r s , PD(r)= 3- r Idt.L- '  E- W

this reduces to P 7 1 YD]f

P(r)=exp - rx r4 exp(r/ra) ,  
-

ID r4, rh (37)

7 B = r.41 = 3FrA This time, matrix _WD(s) is defined as

0=! 136) Uw),,ls),,

when (p,v)t-(4,v) (v'= 1,2,3)
[ _W(s)]. = (38)

The factor of in the exponential can be interpreted as -- 0, ,

the quasi-steady-state populations (28). The reason for when (i,v)=(4,v) (v'= 1,2,3)
the appearance of this factor is the same as before [see
the argument below Eq. (4) in Sec. II]. We find that PB(r) and PD(r) are completely indepen-

A similar calculation yields dent of the Rabi frequency fIR and the energy shift V.
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This results in part from the secular approximation (24), time that from this initial state jfl,n ), the system makes

and, in part, owing to the fact that state 14,n ) is corn- any number (f) of successive decays while creating many
pletely decoupled from the laser due to our choice of types of photons exclusive of wi photons, and eventually

geometry (k d=0). CoupinAg of state ; A ) to the symme- reaches a stitc ;a,n j ), irom which the system makes

trical states occurs via spontaneous decay only and does the final decay la, n -f) - l,n -f-I ) at time -r.

not involve the Rabi frequency "1 R. Analogous to Eq. (34), we thus write D (Wapr) as

V. PHOTON STATISTICS
IN A DRESSED-ATOM PICTURE 6)(w)1,i-P -- u;6a(39 '

We have formulated the probability distributions of

durations of a single BP and DP based on an elementary where matrix _Wai},6(s) is defined as

branching function wp(t). However, the real power of rwv(s), when (1i,v)=#=(a,fl)
this method will become apparent when frequency- W)s]), (40)
resolved photon statistics are considered in a dressed- [.Wa)(s)]JV 0, when (Av)=(aX)
atom picture.

In this section, we consider a delay function D (w, ,r) As a first example of an application of Eqs. (39) and

defined as the probability distribution for the time delay r (40), we consider the FRPS of the fluorescence photons
between successive emissions of o, photons. For simpli- produced by a single two-level atom irradiated by a

city, let us suppose that the transition I a, n + 1 ) --- 1f, n ) strong coherent laser with Rabi frequency f'R and detun-

for fixed pairs of (a,fl) and any n creates a photon with a ing 8.2122 The frequency spectrum of the fluorescence
definite frequency ~ai. This assumption corresponds to photons is the well-known Mollow triplet. 6 These pho-
the secular approximation, such as Eq. (24), and the tons are produced when the system cascades down the
quasiclassical character of the laser field. The first emis- ladder consisting of states I a,n ), executing the four types
sion of a co, ! photon leaves the system in state Ifl, n ) (n of transitions Ia,n )-1,n - I) (a,fl= 1,2; n = 1,2,... ).

can be any integer) at time t =0. Therefore the function The decay rates ra,, between the adjacent multiplets were

D (War) can be interpreted as a probability per unit calculated to be23

r [(0 ,+82)-/28-12

n2 +82) [[(11 +82)1/2+812 n2• (41)

Let us calculate the delay function of the W2, photons. same type of transition 12,n )-1 I1, n - I ) without any

The W(a!)(s) matrix in Eq. (40) takes the form time delay. From Eq. (43), we find the average and the

r,,_ _ r,2  dispersion of the delay time r to be

- r2, + r 2 1-22 +r 2
s+r 1 +r 2  s+rl+r,2= ' ,2 =  2112(44)

--W(21)(S) 0 r 22  (42) F2,F,2 F2,F,2

s + F2, + F22 Substitution of Eq. (44) into Eq. (13) yields

Substitution of Eqs. (42) and w 2 1(s) = r2,/(s + r 21 +r 22) r,2r21

into Eq. (39) with the use of the formula frn=T Fr2 + F2

al-cf n
[a b af b -c rT R(45)

~ ~ ~ -c8 (n2 +6 2 )(a1 + 28 2 )c 10 cf R

yields 2 2  /2
yields~~1 Amr r1(F 2,)

F& M 2F2, )

Dw, ) r,2r2, (r2mTrlD (w21,,) = F,2 [exp( -r2 , )-expi-r2))]" - 2(fl +28 2 )2 -fn4 1/2

(43) M 2( n2 +82)2 (46)

This function clearly manifests the antibunching effect
D(0)2 1,0)=0, simply explained by the fact that the emis- where we used Eq. (41) to write r's in terms of fR and 8.

sion of a 02, photon at time t =0 projects the wave func- As can be seen from Eq. (46), the photon statistics are

tion of the system to one of the dressed states I ,n ) so sub-Poissonian. Mandel's Q factor can be calculated

that the system is unable to emit a photon created by the from Eqs. (16), (45) and (46) to be
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4 >where

Q 2(2+2)2 2 V2+f2)1/2

wlirl' is in comp!ete agroemcnt wi'h prcv;ously o'taincd ihe siift of eigenenergieb AEan (a= i,2,3,4) from the
result.22  energies given in Eq. (21) are expected to be small and on

As a second example, we consider the FRPS in a BP of the order of 1R(k.d) 2.
the fluorescence of two-atom system considered in Sec. Modified decay rates between adjacent multiplets can
IV, but now in a dressed-atom picture. This is more com- be found from Eqs. (26) and (49). It is easy to see that the
plicated owing to the level structure of the dressed states. decay rates r,,# (a,j3= 1,2,3) involving the short-lived
For simplicity, we completely ignore the existence of states Ia,n )' (a= 1,2,3) are not changed significantly
state 14,n ). In order to study the FRPS, we again need from the values given in the 3 X 3 subblock in matrix (27),
to know the delay function D (6a), T) for a fixed pair of leading to the same quasi-steady-state populations (28).
(a,f) (a,f=l,2,3). We must evaluate the fth power of a The rates r 4 or F involving decays to or from the
3X3 W(a,0 ) matrix, whose analytical expression is some- metastable states 14,n )', are different from the values
times impossible to find. However, we can still find an given in the I X 3 and 3 X 1 subblocks in matrix (27). In
approximate expression for D (oar) by truncating the particular, we find the modified total decay rate r4 to or
sum in Eq. (39), corresponding to the minimum delay from state 14,n ) to be
time or minimum number of successive decays between 3 3
the dressed states required for the emission of the next r4- I r4,= I F 4
o, photon. As an example, let us consider W12 photons. 0=1 l = I
Since the first nonvanishing ([__W 12)(s)]f) 21 occurs when
f = 1 in Eq. (39), we predict that =FA + (k.d)2  - r+8V2 )

4 (m2 -8V 2 )2

D(0)12, r) X. 1iw 2 1(S)W 12 (s)] 
1

(3- D ) s 12 (3 - D ) s = r F 1+ 5( kad) R (f R +  8 V (50
-- ( 2 r exp 4 r 1 , (48) 2 (122 -8 V2 )2 J (50)

where approximate values for r A and r s appropriate to

where D((o12,r) is renormalized as f'D(to 12 ,r)drzl. the limit d <<k were used (see Sec. I). Analogous to

Using Eqs. (13) and (48), we find that rT = Trs(3-D)/8 Eqs. (36) and (37), we find
and AM =(ffiT/2)1/ 2 (sub-Poissonian). 3 rj34r = 3(FrA )-,

VI. COHERENT PUMPING WITH ARBITRARY 1 = J

GEOMETRY(k.d*O) 3 (51)
D=I r =(F'A).(1

In Sec. IV, we considered the special case when 1=

k-d=0. We found that only the transitions FE )'IS) The reason for these shortened periods (roi'B ) is under-
and IS)*-+IG) involving the symmetrical atomic states stood as follows: the laser excites not only the transitions
were excited by the laser field. This result is also implied IE)*-.IS) and IS).- [G) but also the transitions
by Eq. (20) where the state 14,n ) is the direct product E )- I A ) and I A ) -IG). Consequently, transitions to
IA )Fn - 1). However, when k~di0, the situation is• or from the shelving state IA ) can be caused by stimulat-modified because the interatomic separation d now re- ed emission and absorption (of the laser photons) to the
suits in an atom-laser-field interaction Hamilton- short-lived states E), IS), or IG) as well as by spon-
ian that varies as ihg [cos(k.d/2)](a ' +o ')a taneousemission.
+Ag[sin(k.d/2)](or-ur)a +H.c. It is seen that the

coupling now contains antisymmetric as well as sym- VII. CONCLUSION
metric components. When k-d << 1, we find the approxi-
mate dressed states to be We have shown that it is possible to observe MQJ in

the fluorescence through a cooperative atomic interac-
fIR Ak-d tion. The jumps or discontinuous changes of the fluores-IIl,n I = l,n - 14,n )

2(A + 3 V) cent intensity occurs on a time scale F - r -(ko/d)2"

12,n 1'=2,n ) A restriction is imposed on the interatomic separation
(49) needed to observe MQJ by the finite response time of the

13n 13 + Akd 1detector. In order to make r largei [han the response
2(A-3V) time of the detector, d must be -;X 0 /100. Current tech-

f'R Ak d nology has yet to surmount this difficulty. Ion traps can-
14,n )'1F4,n )- Fl,n ) not be used because the Coulomb repulsion is too strong.

2(A+3V) Using neutral atom traps or confining atoms in a solid

IR Akd host may be the best hope of observing the two-atom

13,n) , MQJ described in this paper.
2(A -3 V) The formalism developed in this paper can be applied
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to any four-level or more complicated scheme in which states was studied, including the level shift of the inter-
one or more states is metastable. Additionally, our for- mediate symmetric state, but neglecting the transitions
malism can be used to study the FRPS of any multilevel between symmetric and the antisymmetric states.
atom in a simple way.
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Using a fully quantized dressed-atom approach, we present a theory and interpretation of the
pressure-induced resonances in four-wave mixing (PIER4) that may arise when three incident fields
interact with an ensemble of two-level atoms. The PIER4 resonances are seen to arise from a col-
lisionally created modulation of a dressed-state population when an operator approach is used to
solve the problem and from a level crossing between collisionally populated dressed states when an
occupation-number formalism is used.

I. INTRODUCTION (Fig. 1). To satisfy phase-matching conditions, it is
necessary that Ik, -fZ s / c IL <<, where L is the length of

In two previous papers, 1
,
2 we presented a theory and the sample.

interpretation of vai lus pressure-induced resonant struc- As 8 is varied, the four-wave-mixing signal exhibits a
tures that can appear in nonlinear spectroscopic line resonant structure centered at 8=0 in the presence of col-
shapes. The first of these papers' concentrated on the lisions. 1- 3 This structure is given two interpretations in
problem of the excitation of a "three-level" atom by four this work. First, in terms of operators, it is described as
incident radiation fields. Both semiclassical and fully resulting from a collision-induced creation of a modulat-
quantized treatments were given, and an interpretation of ed dressed-state population operator. Second, in terms of
the pressure-induced resonances in terms of transitions occupation-number states, it is described as arising from
between atom-field dressed states was developed. In the a level crossing between collisionally ptualated dressed
second paper,2 a semiclassical dressed-atom approach states. As such, the current approach provides a link be-
was followed. In that approach, the pressure-induced tween our two previous calculations. Moreover, it pro-
resonances that appear in four-wave mixing signals on a vides what we believe to be an attractive physical ex-
two-level atomic transition were interpreted in terms of a planation for these pressure-induced resonances.
collisionally-induced creation of a modulated dressed- Section II introduces the basic assumptions and ap-
state population. proximations of the theory. Section III contains the cal-

It is the purpose of this paper to present a fully quan- culation in terms of dressed-state operators while Sec. IV
tized dressed-atom approach which is used to calculate summarizes the analogous calculation in terms of
the four-wave-mixing signal produced when three fields occupation-number dressed states.
are incident on an ensemble of two-level atoms. This is It might be noted that several other fully quantum-
one of the problems originally examined both theoretical- mechanical calculations of four-wave mixing have ap-
ly and experimentally by Bloembergen and coworkers in peared.4 Our approach differs considerably in spirit from
their systematic study of pressure-induced resonances. 3  those calculations.
A more complete list of references to this and other work
is included in our previous papers."12  It. BASIC EQUATIONS AND ASSUMPTIONS

To be more specific, we consider incident fields having We consider a two-level atom (upper level 2, lower lev-
amplitudes Ey, (p= 1,2,3), frequencies el 1) interacting with a quantized radiation field. In the

'12='1, f3=l+b , (1) absence of collisions, the Hamiltonian for such a system
is given by

and propagation vectors kf, (A=1,2,3). We seek the isgivenby

four-wave-mixing signal generated with propagation vec-tor _-_ 2
rk, '+ k-2 (2)

and frequency k3

FIG. I. The atom-field system considered in this work. The
when these fields are incident on an ensemble of two-level four-wave-mixing signal of interest is generated with propaga-
atoms whose levels I and 2 are separated by frequency (o tion vector k, =kI +k,-k, and frequency f1, = fl + 11-l .

40 6921 (c) 1989 The American Physical Society
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H-f1oa22+jmW .(a a +-) and

k,-R e i1-( 4) al (. 90)
-i~fi(f 1 ,ei or1 aP,-~ P alua 12) , (4

It is possible to formally integrate Eq. (7c), substitute
where the resulting expression into Eqs. (7a) and (7b). and per-

o'ia11i)(j! (5) form the summation over the field modes. When this
is aprocedure is carried out in the Weisskopf-Wigner ap-

is an atomic-state operator, &) is the frequency separation proximation, one finds that Eqs. (7) may be rewritten as5

of levels l and 2, ap and a, are creation and destruction
operators, respectively, for field mode pi, flp is the fre- ,k R,,or _ Y2+i(oUa + Ylfpel '(2a27-1)a, , 10a)
quency of field mode M, and f,, is a coupling constant to
be specified below. For the present, the atom is assumed 0 I

to be fixed at position R=R0; a generalization to allow 3

for atomic motiod is included in the final results. A reso- a-2 - 2 a22
-  (fe a -a, +f *e a a

nance or "rotating-wave" approximation is already impli-
cit in the Hamiltonian (5); it is assumed that only modes lOb)
with frequencies fly satisfying f2-wo /w «1 interact
appreciably with the atoms. all a,(to )e -

W e will work in the Hcisenberg representation, in tk ,1r * -1dk'.R ltc

which any time-dependent operator 0(t) evolves as jt f, e 0,, -t,)e (I ,),
S=-(i/Ai)[0,Hj. From the commutator relations

where " is the spontaneous decay rate of level 2, t0 is

[Or,( t ),Crak/(t)] Crl( t)6.k --akj(t)bl i , some arbitrary initial time, and (, now is assumed to in-
clude any radiative level shifts. In writing Eq. (10a), we

(6) have neglected a term

ik ! -RI
+ I J,e " ( 2o-2--It(a,,

p , 1.2.3

it follows directly that the time evolution of atomic and and in (l0b) a term
~uandfic (l. (7a)termfield operators is given by

Ik -R, (f,, e ik7,R a,,+f *e k R,o6-=-i~oq +Ifll e "(a22-ajj)a/, (7a) /:..

. tk R, Ik*'R *

- Y-(J' e t, , al, ij•e k a, ) , (7b) Such terms, while important for maintaining the integrity
I, Iof various operator products and commutation relations,

• -R do not contribute to the four-waxe-mixing signal to be
al -il,,a,, Jr'e or ' (7c' calculated below.5'j

The physical observable that is calculated is the rate at

where which photons are generated in a fieid mode a,
,a,-l,2,3) which was originally unoccupied. The num-

a ( a -or (8) ber operator h,,,(t) for field mode a , is given by

are raising and lowering operators, respectively, for the h,, (t) =a +(t)a( t) 0 1)
atomic states. It is not necessary to write time-evolution
equations for a, a , and a' since these operators are
readily determined from Using Eq. (lOc) and averaging the number operator over

the initial atomic and radiation field states (denoted by

71 = 1-- 72, .(9a) ( ), ). one finds that the average number of photons emit-
"- ted into a field mode a, that was initially unoccupied is

(. Ig a ( (9b) equal to

=!f I ,dtI t" "expi i[k,0,.(R/-R)] (12)
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where we have now included contributions to nao(t) from ([) = -[( r2 + r)+iao](a )

an ensemble of N "active" atoms, located at positions 3R=RJ(j=I ..... N). + Yfe ",ei(2(022),--l )a ,, (I17a)

In gncra', &J will vaty from one atomic site to another ",= I

since both the phase and amplitude of the incident fields 3 Ak-R
change as the fields propagate through the atomic medi- (&22)c= -Y2(0"22)c (f,,e I, '(a ),a,
um. To simplify the calculation, we neglect all effects re- t, I

lated to field depletion (i.e., it is assumed that the sample +f*e- kARoa± (0-_ ) , (17b)
is optically thin). In this limit, there is no R1 dependence 1

for 1 and a2, while a1 , mirrors the (unmodified) spatial aM = a( e  -
phase variations of the incident fields. In particular, it is
shown below that the contribution to aL(t) associated where R0 is the position of an arbitrary active atom. The

with the generation of a four-wave-mixing signal in a remaining atomic operators are given by

direction k, varies as (a+)c=((a)c)T , (a1)c:1-( 2 2 )c . (18)
j k *R, - It

,L- M= Le (13) Owing to our neglect of field depletion, the last term in

where &J is independent of R since field-depletion effects Eq. (lOc) has been dropped in arriving at Eq. (17c).

have been neglected. When this expression is substituted Equations (15)-(17) determine the rate at which pho-
tons are generated via four-wave mixing into fieid mode s.

into Eq. (12), it is seen that the major contribution tu It should be noted that the commutation relations (6) are
nl%1 (t) occurs when ft,, --fl and k,,("-k . Both of these no longer valid for the operators (a ),. 7 In subsequent
conditions can be satisfied only if equations, the ( ... ), averaging symbol is dropped.

k, : il/c , (14)
11I. SOLUTION VIA OPERATOR APPROACH IN

which is a phase-matching condition for four-wave mix- DRESSED BASIS
ing. Assuming that this condition is satisfied, that
k, I R1 -RjI >> 1 for j V7j' and that the limit t - oo in Eq. Equations (17) describe the collisionally averaged in-

(12) is taken, we show in Appendix A that the rate h, at teraction of three incident field modes with a two-level

which photons are emitted into mode (k ,fI) is propor- atom. Each field mode [t (u 1,2,3) is characterized by a

tional to wave vector k,, polarization t., and frequency flu, such

that k, =fl, /c. For simplicity, all fields are assumed to

M IX (&+'4 6K (15) be polarized in the direction, fields I and 2 are assumed
.j = 1+ to be incident in the 2 direction and field 3 propagates at

a small angle 0 << 1 relative to the z axis (see Fig. I). In
Equation (15) can now be generalized to incorporate order to calculate the phase-matched emission with new

collisional effects. In the absence of collisions, a&, is in- wave vector
dependent of j and i,(t) varies as N2 . With collisions
present, Eq. (15) must also be averaged over collision his- k, =kl +k 2- k 3  (19)

tories. Since the collision histories at each active-atomsitecanbe ake asindpendntit ollws hat to lowest order in perturbation theory, it is necessary to
site can be taken as independent, it follows that obtain a solution to Eqs. (17) for or - ( c ) which varies as

( ~j al'),=(.Yj ), (dji ), for j k' (( ), indicates an f If 2f _*. The quantit ies f~ (~I 1, 2, 3) can be related to
average over collision histories). For j=j' the contribu- MtbiTfequnies f incden fed b

tion to n (t) is of order N and can be neglected in com-

parison with the N 2 contribution for jkj'. The quanti- ifi(fl,)1/2= VI, (20)
ties (&j ),. are independent ofj since each atom, on aver-
age, sees the same collision history. Consequently, one where
finds the photon emission rate given by (15) is proportion-
al to a quantity I, defined by Y,=(p )2|Ell/2h , (21)

S= ( ( ), ( ) ) , (16) p. is the y component of the atomic dipole operator, E,
is an effective field amplitude for field mode p, and F, is

where the outer brackets refer to an average over the ini- the average number of photons in mode p.
tial atomic and radiation field states. We shall refer to I, It is rather straightforward to solve Eqs. (17) using a
as "the signal." perturbative approach. One obtains all the standard re-

It is now straightforward to introduce collisions into sults relating to the PIER4 resonances. Rather than fol-
the operator equations (10), since the signal depends only low the direct, perturbative approach, we introduce a
on (a ), . The collision model adopted is one in which dressed-state approach which enables us to give a simple
collisions do not affect population operators a 1 and a, physical interpretation to both the collision-induced
but result in a decay of coherence operators (a. ), and terms and the background signal. Our approach is per-
(a ), with rate F. In this model, Eqs. (10) are turbative in nature, since the dressed states are defined to
transformed into lowest order in the I, itially incident fields.
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To simplify the algebraic complexity of the solution of ously defined in Eq. (5). Using Eqs. (27), (28), and (17),
Eqs. (17), we limit our discussion to atom-field detunings we find that, to first order in the coupling constants and
and decay rates which satisfy neglecting .,pontaneous and collisional decay, the time

evolution of the dressed-state operators is given by
(y6.)IALI<1(2) a = , 5 a(O 4  =-i~oa .a (29)

where Ap is the atom-field detuning for field mode p+

defined by In order to specify the initial conditions for Eq. (29), it is
assumed that, at t =0, the atoms are in their ground

(23) states and a distribution of field modes is present, but
This so-called secular approximation s often corresponds there is no atom-field interaction. The atom-field interac-

to the experimental conditions under which PIER4 reso- tion is then turned on in a time that is long compared

nances are observed: It is further assumed that the vari- with 'A' '; with this adiabatic turn-on of the fields, Eqs.

ous Rabi frequencies are less than or comparable to the (29) retain their validity even though the atom-field in-

spontaneous decay rate '2, in order to justify the pertur- teraction is not constant as has been assumed in their
bation expansion that is used, derivation. The initial conditions are determined by the

In the context of these approximations, it becomes ex- density matrix p, which is constant in the Heisenberg rep-

tremely convenient to introduce dressed states. We first resentation. The density matrix corresponding to the ini-

consider fields I and 3 as the "dressing" fields and neglect tial conditions described above is

the presence of field 2. The appropriate dressed states are p= )'( A . , (30)
the eigenstates of the Hamifltonian describing the interac-

tion of a two-level atom with field modes I and 3 in the where p, is the density matrix for the radiation fields,
absence of collisions and spontaneous decay. Specifically, and the s superscript indicates that the bra and ket are
this Hamiltonian is given by given in the Schr6dinger representation.

fl•fl- r One must now add to Eqs. (29) the contributions to
[ ' , (Ra)o-. a,-i,Ra, ] , (24a arising from spontaneous decay and collisions. To carry

t ., out this procedure, (1) equations for 6,,/; are written in

where terms of the bare-state operators 4, i,j =1,2) using

tt,, =',a2- -~ ,, a 'a, + 4) (24b) Eqs. (26) and (27); (2) the 0,; are replaced by their contri-
", .3butions from spontaneous emission and collisional decay,

i.e., 6711 = ,20" , 0+ (3-) "2 -

and the a,, arc rewritten in terms of the a,,/, using the in erse

f,(R,) , 'R
,, (25) of Eqs. (26). (Note that greek indices are used to label

dressed states and latin indices to label bare states).
Consistent x, ith our perturbative approach (see below), it When the above procedure is carried out, the resultant
is necessar) to (btain tihe dressed-state cigenkets only to expressions are algebraically complicated. In ilie so-
first order in the coupling constants J', Ii - 1,3(. To this called secular approximation (22, ho%\exer, the equations
order, one finds that the dressed-state cigenkets can be take on a simplified form. As lone as condition (22) is
specified In satisfied, one can neglect contributions from (7 I and

-I) R to lowest order in (y ,+ F)/ A,. In that limit, a If?
.,l :n ,t )=ltt, ) f"R° -2; , )amay be set equal to 0, and the time eolution of u,,. ob-

, .. A,, , taimed by the procedure outlined above, is given b\

(26a) I,) R, )/*. (R,)

+,
= -B 271;, 2r F ( all A Xt,,r ,,

A, 131)

(26b) It is necossary to calculate o11 only, since (T may be

where i :n , (i 1, 2) is an eigenket of H,. obtained from ( tB using

In terms of these kets, one can define dressed-state 7 = I - . (32)
operators a ,b rt.fl A, B I by

a, (r: :i , (i [3: ni, n 13. -- A, B , (27) Note that Eq. (31) is correct to second order in the cou-
piing constants even though the dresed Itites are defined
only to first order in the coupling constant,. For the ini-

which, according to Eqs. (26), are linearly related to t ial conditions 3M.' in %% hich ( a l/j(0 ) ) 0, second-order
bare-state operators (7,, defined b, corrections to the dressed-state eigeeikeil lead to toutri-

(7, Q. ) j;it1.n i , -:1,2 . (28) butlo s it) Eq. 131) which are at least third order in the

coupling constants.
We are not in!ercsted in the most general solution of

The o7; defined by Eq. '28) are equi alent to those previ- Eq. (31). To calculate the four-wave-mixing signai in the
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k, direction, we seek only that component of aB8 which driving terms. On- of the terms is proportional to
'aries as fIf*. We set a,4, equal to o,' = IA )( AAA I Bf(J'f ). This term, given by Eq. (33), corresponds to
and a,(t) equal to a,,(0)exp( -ifft) in Eq. (31) to obtain a collision-induced population of dressed state B which is
the appropriate perturbative solution for UcB. The com- modulated at frequency 6. The second contribution, also
ponent of the "steady-state" solution for OrBB which modulated at frequency 6, corresponds to a modification
varies as fif*,, obtained from Eq. (31) and denoted by of the initial dressed-state population a,.., and is present
UBB(f 1 3), is found to be even in the absence of collisions. The u 8 (fifT) term

leads to the PIER4 resonance and the a,. term to the
(flf3 )=2T fi(Ro)fX(Rn)ai(0)ai)0) 3 ht background contribution in the four-wave-mixing signal.

SAIAj(2+i8) This separation of the two contributions to the four-
wave-mixing signal is essentially the same as the one

(33) presented in our earlier paper using a semiclassical
where the fact that [Q3- 1=6 [Eq. (1i] has been used. dressed-atom approach. 2 The pressure-induced reso-
Note that a BB vanishes in the absence of collisions. nances result from a collision-induced population modu-

It is now necessary to consider the effect of field 2 to lation of dressed state B, while the background term re-
lowest order. It is convenient to return to the bare pic- sults from the field-induced modification of dressed state
ture and write A

It is now a simple matter to obtain the four-wave-
,- 2 +Friwa +f2(R)(2a2 2 -I)a,()e = . mixing signal. Using Eqs. (35)-(38), one obtains the

steady-state solution
(34)

2f f 2f3 *a+(O)a2(O)aI(O)
This equation is to be solved to first order in f2. The "I" o =fff_ _()(

term in Eq. (34) can be neglected since it corresponds to AIAI(Al+b)

linear absorption of field 2, which does not contribute to 2F ek I)

the four-wave-mixing signal. In the remaining equation, X +1 alA , (39)
we take only the component of or- which varies as I
(fjf ) since it is this component that contributes to the where k,=k+k 2 -k 3 and Combin-
four-wave-mixing signal of iterest. Denoting this com-
ponent by uc,,fjf'* ), we find that the appropriate equa- ing this result with Eqs. (16), (13), (30), and (38), and as-

tion to be solved is suming that Ib'< A such that one
finds a four-wave-mixing signal

Y2 = +--( + i2+ F  i r 1 2I F 2S61 2.-1 F,_ • 2F
I = iltf f f3 _-ln'13 1 + 1I (40a)+2f(R,)o,(iff )a,(O)e (35) fi ±1

It remains to express ,,(flf* ) in terms of the 21 -  1 (40b)
dressed-state operators. The inverse of Eq. (26b) is 3 Y2 +

f* (Ro) +
2fn,,n3 R)= B;n,,n, Y -- a,,A;n,,n) where fl, is the average number of photons in mode p.

1.3 A, As has been mentioned in an earlier paper, the four-
wave-mixing signal is produced even for temporally in-

(36) coherent fields, since the signal depends only on the prod-

which al!ows us to construct uct of the fit, s. The result (40) is the same as that ob-
tained by standard, semiclassical methods.' ' What has

ar_ '2;n , it) (2; n , n been achieved in our approach is an interpretation of the
"" result in terms of the quantized dressed-state operators.

h aOur perturbative approach is valid provided thatUsing the fact that or flo =(7B. Z), and keeping terms 2

which vary only as ffJ, one finds F ,/2 r4y 2 )/Y2 <<I (/1= 1,2,3).
Equation (40) is not complete. Although fields I and 3

a,(flf, )=* (1' f,) have been used as the dressing field, one could have
equally well used fields 2 and 3 as the dressing fields and

f I (R J'* (R, a (O)a I (Ole' arrive at a contribution to the signal in the
+". , (37) k k, +k,-k, direction. Thus, a term 1. .2 should be

added to Eq. (40). The resulting equation can be general-
where o )r JB/(ff) is given by Eq. (33). a, (t) has been re- ized somewhat to allow fo- atomic motion if one makes
placed by a,,(O)exp( - i ,i ), and o"!1 is a evaluated the replacements
to zeroth order in f, and J,, i.e., A, .A,4-k -v,

From E 3 an d A (38) i41)

From Eqs. (35) and (37), it is seen that (T has two where
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kij ki-kj (42) ( l;n, - 1,n 2 - I,n 3 + I Jo I0 1;nl,n 2 ,n 3 )

and v is an active atom velocity. Assuming that I A ,1 is Of course, the signal calculated from Eq. (47) is identical
much greater than the Doppler width associated with the to that calculated in Sec. III [Eq. (40a)].
1-2 transition, one finds a signal From Eqs. (35) and (37), it follows that this matrix ele-

I,= (iX2X*/A312 2 _),+I 2+ ment of a- has two driving terms. The first of these

y 2 +i(8-k 31 .v) 1,+ 1,--21, terms varies as

Dl=(f 2/A)(l;n l - l,n 2,n 3 + 1'IBB l;nl,n 2,n 3 )(43)
(48a)

where () indicates an average over a Maxwellian veloc-

ity distribution' ° and 1-.21 represents a term in which It is shown in Appendix B that this term is proportional
field indices 1 and 2 are interchanged, to a matrix element of the density operator )95(t) in the

Schr6dinger picture (the tilde indicates a field-interaction
IV. SOLUTION VIA OCCUPATION-NUMBER representationI), namely,

APPROACH D, oc (f 2/A)

It is possible to give an alternative interpretation for X (B;nl - 1,n, - 1,1n 3 + 1 1p#(t)B;n,n,- 1,n3 )
the pressure-induced resonances if the occupation-
number states are explicitly specified. In this approach, (48b)
the pressure-induced resonances can be viewed as result- provided one takes the contribution to this term originat-
ing from transitions between the various dressed states. pro on ta tonution to thte orgin-

The signal is given by Eq. (16). In the Heisenberg pic- + I an ta li is
ture, the density operator p is constant in time. We shall
assume that at t =0, the density operator is given by D= (flf 2fT/A 3)e iW

p=p(O) X ( 1;n1,n2,n 3 aU
0

4 . 1 11;n,n 2 ,n 3 ) (49a)

I P(n l,n2,n3)1 l;n 1,n2,n3)(l;n ,ni,n3-1 (44) ,(flf2J,3*/A3)e ih

nI n21
X ( A;nh~n,_- 1,n3 + l j/5(t)I A ;n,,n,- l,iz3 + 1I).

that is, the atom is in its ground state and the field modes
are described by a density matrix diagonal in their occu- (49h)
pation numbers. The quantity P(n 1,;,, n3 ) is the joint Let us consider each of these terms separately.
probability for nt, photons in mode j (y = 1,2,3), which The term D1 vanishes in the absence of collisions [see
is assumed to be a slowly varying function of i, n 2 , and Eq. (33)]. For this contribution to exist, a collision-
n 3 (i.e., we assume that i, >>An0 >> 1, where An, is the induced coherence between states !B;n , - 1,n. + 1 ) and
standard deviation of n,,). In this section, all bras and .B;n,,n;) must be formed. As shown in Fig. 2(a), these
kets are written in the (time-independent) Schr6dinger states differ in frequency by a detuning 6. Field mode 2
picture. On taking the trace in Eq. (16), one finds can then act on the (B;n 1 ,n2-, l,-1, )-(B;n, - l,n2

"P~n1'n'n,) -1,n3 +l) coherence to create a dipolelike coherence1 .2 ,, (2;n -l,n2-ln3+l pjt) l;n,,n,,n that oscillates

,,, ,,,. ,,at frequency =£12-6. It is this coherence which is
the origin of the four-wave-mixing signal. As 6 is varied,

X ( l;nl,nz,n3, . ii;r ,mf2 ,mf1  there is a level crossing resonance in the four-wave-
S( i;min. nm,m l;n ,n12,n~3) . mixing signal having width (full width at half maximum)

2y2 which corresponds to the PIER4 resonance. Thus, in
(45) this picture, the PIER4 resonance arises from a level-

crossing between dressed states that are coherently popu-
Of all the terms which contribute in Eq. (45, the terms lated as a result of the combined action of the incident
corresponding to the four-wave-mixing signal having fields and collisions. The amplitude of the resonance de-
propagation vector k, =k, +-k,-k are those for which pends on the amount of IB;n, -- 1,11; - 1 )-I B,n1,n i

i=l, =nl , m 2 in, itn 3 + 1 . (46) coherence produced, which, in turn, depends linearly on
the collision rate F. The entire process, which is reminis-

Thus, the signal generated in direction k, is given by cent of that encountered in trilevel echoes 12 and coherent

I, = p(nln,n 3  Raman beats,' 3 can be interpreted rather loosely in terms
of a coherent Raman scattering [Fig. 2(a)]. The term
"coherent" is used since the various density matrix ele-

x (;, - l,_ - 1,11, -1 o 1:n , i,,n,)12  ments have a well-defined macroscopic spatial phase asso-

ciated with them.
In contrast to the D, contribution, the D, term [Eq.

and the problem reduces to evaluating (49)] is nonvanishing even in the absence of collisions. In
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'2
S 6LB;n,-,,n,-1n3 +1 >

I3 B; n,n2-1 ,f3 W'o 9

IA; n,,n2-1, n3+,1> -- IA; n,,n2-l,n3.+-l>

[a) [b)

FIG. 2. (a) Collisions create a coherence between dressed states B; n 1, n2 - 1,n ) and IB;n, - l,n, - nI+ I ), starting from state
A;n,n, - l,n3 1± ). The four-wave-mixing signal in direction k, having frequency 1, =2l-8 appears as a type of coherent Raman

scattering originating in state B; n 1, n, - 1, n. ) and terminating in state I B;n I - 1, n, - 1, n, + I ), with field 2 acting as the driving
field for this transition. This contribution to the signal exhibits a level-crossing resonance centered at 8=0. The effect of field 2 is
shown schematically; the actual role of field 2 is to create a coherence (2;nl - l,n, - l,n3 + I/),(.!l ;n1 ,n,n 3 ) which is responsible
for the coherent emission at frequency fl-8. (b) Another contribution to the signal originates in state I A;n ,n2 - , n3 + I ), which is
populated even in the absence of collisions. This contribution to the signal can be viewed as a type of coherent Rayleigh scattering
driven by an effective field having propagation vector kl+k,- k; and frequency 11+fL-12- 1-8 . There is no resonant structure
centered at 8=0 associated with this contribution. These figures are drawn assuming that fields I and 3 are the dressing fields; in ar-
riving at the final signal, one must also consider analogous diagrams in which fields 2 and 3 act as the dressing fields.

some sense, this contribution corresponds to a coherent preted as arising from a level crossing between collision-
Rayleigh scattering from dressed state I A;n,n 2  ally populated dressed states. This type of fully quan-
- l,n3 + 1 ) via an effective three-photon operator tized approach can also be applied to the theory and in-
represented in Eq. (49) by the product fIf2f3 / A '. 'he terpretation of the complementary problem of the ab-
frequency of emission is fl, =I + f"2 -113 [see Fig. 2(b)]. sorption and amplification spectrum experienced by a

This contribution to the four-wave-mixing signal is in- probe beam acting on a given atomic transition that is

sensitive to small variations in 8. simultaneously driven by a "pump" field.
The interpretation given above in terms of the density

operator in the Schr6dinger picture is not meant to be
taken too literally. It is intended mainly to provide some ACKNOWLEDGMENTS
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wave-mixing signal using tthe Schridinger representation
in a future work. For arbitrary initial states of the radia-
tion fields, it would seem that the calculation of the fou- APPENDIX A
wave-mixing ignal is most conveniently carried out using
thc lIeiseinherg representation, as was done in this work. In this Appendix, we outline the derivation of Eq. (15)

-loywever, the Schroidinger picture may lead to an alterna- from Eq. (12). We first note that the solution we seek is

tlvc physikal interpreta; ii as to the origin of the one for observation times (i - t)>> ,1 since it is in this

pre ,itc-iduc'd resonances. limit only that the steady-state solutions are applicable.
We substitute (121 into (13), set i0 =0, change variables to

V. St I RY ( r=t-tI , t''), and differentiate with respect to t to
obtain

Using a fully quaotized approach, we have presented a
theory and intcrpretatior. of the pressure-induced reso- " ., 2- f 'dTexp[ik,,-k, )-(R,-
nances in four wa.c-nixirg signals (PIER4) that can I
arise when three radiation fields arc incident c;n an en- -i( ,,,-- , )r]( : "'
semble of two-levLl items. In an operator approach, the
PIER4 resonanLcs were attrihuted to a collision-induced (Al
creation of a modtlated dressed-state population. In an
occupation-number picture, these rconances were inter- The summations over R, and R,. are converted to in-
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tegrals over the interaction volume V using the prescrip- where (py)21 is a dipole moment matrix element (the in-
tion cident fields are assumed to be polarized parallel to the y

N axis) and VQ is the quantization volume, which is not
I _(N/V)2fdRfdR ' . (A2) necessarily equal to the interaction volume V. The sum

j Ij'= I over k,4 is converted to an integral using

Equation (Al) is to be summed over a small range of Ak0

centered about k =ks. To carry out this summation, we [VQ/(2,P])fdk,, . (A4)

use the explicit form for If, 2, namely, k-o

1rfl2= _ P (A3) Combining Eqs. (Al)-(A4) and setting R=R-R', i
if" 0=?fia(y)W) k(, - k, and fl -ft, one obtains the rate

/V) 2  flI(Py)2 1 12 T)

ti, hk (N (21T )2fh dkfdR'fdRf -' -T drek.R_( )i A5)
",t0

where T is the observation time and Ak is centered about Combining Eqs. (A7)-(A9), one arrives at
k=0. (As noted in the text, (aa j ' )i is independent of 2 1.&(AIO)
R and R' when field depletion is neglected.) 2rcAk2L 'I (py)21 + • (AI0)

A typical geometry is one in which k, is along the axis
of a cylindrical interaction volume of length L and cross APPENDIX B

sectional area A. The integration (A5) is carried out for In this Appendix, we sketch the transitions from Eqs.
such an integration volume assuming that cT>>L, but (48a) to (48b) and (49a) to (49b). In essence, we wish to
cT/k 2 A < 1. If one expands F7- as show how to relate matrix elements of o to those ofp. In

2 -+ k+ ]this Appendix, all bras and kets, as well as the density
d [k;±+ k2y k )2]/ 2c r operator p, are written in the Schr6dinger representation,

and compares it with .R=k.5+kYy+k/, one finds while a is defined in the Heisenberg representation. Al-

that, if cT>>L and cT/k 2 A < 1, then the spatial phase though the calculation in the text involves three fields,

dominates for the transverse directions and the temporal the basic ideas can be illustrated by considering a single

phase for the longitudinal direction. The consequence of incident field. To simplify the notation, we replace

this is that one can integrate over x,x' and y,y' to get flexp[i(kl.Ro-n 1 t)] appearing in Eq. (10) by the single

(27T) 2 A 8( )(ky ) and over r to get symbol f.
Taking matrix elements of Eq. (10) (along with the cor-

2+k)([k] +k"y -Z ) . responding equations for a,, and a ) between states
(l;nl and 11;n'), we find

When the subsequent integration over k is performed, l;nldl1 l;n'=r2 ( l;nI 2 211;n')
one finds

h, = [.N 22rfl, A I(p )21
2 /1c] +fVn'( 1;n ]a , 1;n'- I )

Xff 2 dzdz'e -k, II, 1 "c( z, J +f*Vn (l;n--lla I;n') , (Bla)
L /2 ( 1;n 1"221 1;n' ) = - Y2( 1;n 0"22 1;n')

(A6) -fV'n'( l;n 0u, I I;n'- 1)

where .N=N/V is the active-atom density. When phase f*V-(l~-la l'n') (Bib)
matching is satisfied (k, =U, /c), Eq. (A6) reduces to ' B

hi,= [,V 22rr , A (Py )1 21 &2/ ]L 2(dF ' , . (A 7) l n 1 tl~ ' ) = - Y2 + i'(t) In or ~ '

Electromagnetic energy density in mode s is produced +fvn( I;n Ia221 l;n'- I

in the sample at a rate -fvn'( 1;n ,al lln'- I) , (BIc)

d W ,/dt = (ffl / V jh , (A 8) 1l; n I ,d ; n')= - Y2- i()( l 11a or n')

and the power exiting the sample is equal to +f* Vn ( I;n - I l ;n')

I =LdW/dt . (A9) -f*Vn (l;n-l1lalll;n') . (Bid)
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Using the relationship 0=-(i/ti)[H,p]+(relaxation (1;nl +Il;n')=--Y2-io)(1;nlo+ll;n')
terms), one can obtain equations for density-matrix ele-
ments of p. In a field-interaction representation defined +f*Vln ( l;n- 11o'221 l;n')
by (j;qp';q' = (j;q lpi';q' -i(q-q)II 

-f*Vn+i'+l;njloijil;n'+l 
1 (B4d)

(jj'= 1, 2) One sees immediately that Eqs. (B3) and (B5) are now

matrix elements of p evolve as identical provided one makes the identifications

( l;qlp- 1;q', =Y2(2;qjpI2;q') +fVVq( 1;q fi2;q'-- 1 (l;njIajil;n')=(i;qlj/ji;q'), i=1,2 , (B5a)

+f f*Vq (2;q - 11#1 l;q ' ) ,(132a) ( l;njur_jl;n')=(2;qj jl;q ' ) ,(135b)

2;q JA*112;q' ) = -Y2( 2;q JP12;q') ( 1;n la + Il;n') = ( ;q !pj2;q' ) •(135c)

Although the equations for matrix elements of a and p

-f V/q + 1 ( l;q + 1 ' 2;q' ) are identical, the solutions to these equations differ owing

-f*Vq'+ 1(2;q pll;q'+ , (B2b) to different initial conditions. For example,
( 1;n U1 1 +0 221 l;n') is identically equal to s,,,,. whereas

(2;q#lj ;q')=-j(' 2 +ito)(2;qjfil;q') (1;qj#jl;q')+(2;qjjI2;q') is not even a conserved
quantity owing to cascades associated with spontaneous

+fV'q'(2;q f 2:q'- 1) emission.

-fVq + 1 K l;q + I lp! l;q') , (B2c) Although the solutions differ, it is still possible to inter-
pret the results in a way that enables us to identify matrix

1;q!pj2;q') -('y 2-iw)(1;q p2;q') elements of a with those of p. First we assume that

+f *Vq (2;q - I jfij2;q') (2;q 1# 12;q') ;q - I1#1~2;q'-1 I

-f*V q'+ 1 ( I;q l l;q'+ 1) . (B2d) based on the fact that Aq >> 1. In that limit, the p equa-
tions are closed in the subspace involving kets i l;q ) and

In order to compare Eqs. (BI) and (B2), we note that 2;q-l ), with

[a,r]=[a , tr]=O. If field-depletion effects are neglect- ( 1;qp l;q ) + (2;q - 11pj2;q - 1) =const.
ed, a is equal to a(O)e . By taking matrix elements of By artificially setting this constant equal to unity, one ar-
a a and ra (or a r and aa ),one finds rives at equations which are identical to those for

vp'v-(l;nlil;n'-1) ; (1;n Ia1;n'), provided one adopts the initial condition(W ;qI 1 1;q')=6qq,. Thus Eqs. (B5) can be considered to
Vn - 1 1; n + I l, I;n') , (B3a) give the correspondence between matrix elements of u

and /3, in the limit that all population is locked in the
n ( 1; n - I lo1;n' 1;q), 12;q-I) subspace. If one wants to calculate

=v'n'+ 1 l;n iorl;-n'+l) , (B3b) l;n -a - l;n ) in this scheme, it is simply equal to
(2;n - I1#j l;n ), assuming initial unit probability for the

where ar is any of U,U), a , or a . If Eqs. (B3) are state l;n ).
substituted into Eqs. (Bi), one arrives at The generalization to three incident fields is straight-

forward. Again the matrix elements of r and fi obey
l;n d,11 ;n') =Y2 I;n (y, l;n') identical equations. One finds that

+fVn'( 1;n a il;n'-1) ( l;n - 1,n, - l,n 3 + I a l;n 2,

+f*V 1 (1;n -I a l;n') , B4a) can be identificd with

l:n ,2 I;n') - -Y2( (2;n 1  -- n - l,n, 1 -1 - 1 l;n1 ,n2,11 3

-fvt -I1 I;n + l o l;n') provided that initial state II;n1 ,n- l,nI+l+) is assumed
to have unit probability. The element

- '* V [' 1K I;n a i l:,'+ I) , ( 2;n _ l,n1  -l,n 3  r ;3i l;n 1,n,,n3 )

1l34h) is proportional to

l,nd l;n') - , (l:n I:n') (f 2 /A)( 2;n 1 - l , n ,-- ,n +I p2;n ,n, - l,n)

n /'nt( I: a,, 1 -- I which can be reexpresscd in terms of the dressed states.
This provides the connection between matrix elements of

-fVn--i (l;n I! 7 lIl'n' , t B4c) o, and p used in Eqs. (48) and (49).
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We present three examples of pressure-induced extra resonances that can be observed in non-
linear spectroscopy: fluorescence of a "three-level atom" driven by two laser fields, two-photon ion-
ization of a "three-level atom" (plus continuum) driven by two laser fields, and excitation of a
"four-level atom" driven by four laser fields. We show that all these extra resonances can be inter-
preted in terms of quantum pathways, each pathway involving a collisionally aided excitation. We
also demonstrate that the two first extra resonances can be obtained with incoherent fields, while
relatively coherent fields are required in the last example.

INTRODUCTION ing A'&-=2-o The amplitudes of these two fields, and

their associated resonance Rabi frequencies, are denoted
The field of extra resonances triggered by collisional re- by EI and E2, and II and f1 (f1I--dabE I/,

laxation has for a long time mainly concentrated on the (1 = - dobE 2 /1, where dab and dab. are dipole-moment
resonances occurring in four-wave mixing generation.' matrix elements).
However, similar resonances have also been predicted in The radiative lifetimes of the excited states b and b' are
nonlinear spectroscopy, 2- 4 the main differences being l- and r-1, respectively. Apart from radiative relaxa-
that in this case, the signal originates from atomic state tion, the atoms undergo collisional relaxation. We as-
populations rather than from a coherent collective emis- sume that the active atoms are perturbed by a buffer gas
sion. and that the collisions are dephasing in nature, inducing

The aim of this paper is to present other examples of a decay of the atomic state coherences, but not of the
pressure-induced extra resonances (PIER) occurring in atomic state population. The relaxation rate of the atom-
nonlinear spectroscopy. We examine PIER which arise ic state coherence i-j due to collisions is denoted by /ij.
in (a) the fluorescence of a "three-level" atom driven by We assume that the conditions of the impact approxima-
two laser fields, (b) the two-photon ionization of a tion are satisfied and, in particular, that IAII and IA;2 are
"three-level" atom driven by two laser fields, and c) the small compared to r'-, where r, is the typical duration
excitation of a "four-level" atom driven by four laser of a collision. On the other hand, we assume that IAI
fields. and JA1I are large compared to the widths of the a-b and

Apart from their intrinsic interest, we show that each a-b' transitions, but that IAI-A; remains small com-
of these examples allows one to specify the role of the re- pared to tAIJ and IA [. To simplify matters somewhat,
laxation process in the generation of extra resonances. In pe to and t A1. To simplify m rs s eawe shall also assume that Ifil/AI and Ifl;/A;I are very
particular, we show that the extra resonances can be un- small compared to unity. With this assumption, the
derstood in terms of quantum-mechanical interference density-matrix equations can be solved using a perturba-
between two pathways, each of these pathways involving dtymari o a l n e
a collisionally aided excitation. In addition, the influence tive approach.

of the phase of the applied fields will be stressed. We
show that some extra resonances can be obtained with
number states for the applied fields while, in other cases, b
relatively coherent fields are required. "

I. NOTATION AND ASSUMPTIONS I A2

Let us first consider a three-level atom with a ground
state a and two excited states b and b' (see Fig. 1). This W,
atom interacts with two electromagnetic fields of frequen- W2

cies o, and w2. The first field is nearly resonant with the
a-b transition and we denote by AI =owt - o the frequen-
cy detuning from resonance. The second field is nearly
resonant with the a-b' transition and we define its detun- FIG. 1. Three-level atom driven by two laser fields.

41 2677 @ 1990 The American Physical Society
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The calculations are carried out using either a semi- Hamiltonian are9

classical approach (classiYcal fields and quantum-
mechanical atoms) or a (fully quantized) dressed-atom I I(N1 ,N 2 )) = - -Ia,N 1 + 1,N2 + I )
picture. In the first case, the atomic density-matrix ele-
ments evolve as6  +Ib,N 1,N 2 +l) , (6a)
d I-d~i = -1[,PJ~ - j + r bPbb + rb'Pb~b" ) )ia 6)ja , f

d t P j = A [ ~ p l j - r 'j p i + ( r ~ bb r b ~ b b ') i,, i - 2 (N ,N 2 ) ) = - n 2 a ,N + 1,N 2 + 1 )

(1) A

where +Ib',N +± I N 2 ) , (6b)
a1

(2) 13(N,N 2 ) )=Ia,N1 + 1,N2 +)+-I b, N,N 2 +)

is the sum of the radiative and collisional relaxation rates
and + 2 2 b',N1 +I,N 2 ), (6c)

H =H0 +V (3a)2A

where Ii,N,N 2 ) describes an atom in state Ii ) with N l
is the Hamiltonian for the system without reaxation, photons of frequency o, and N 2 photons of frequency (02.
The quantity Ho is the free-atom Hamiltonian and Vi The quantities fl and W2 are evaluated at N, and N2,
the electric dipole interaction between the atom and the where N, and N 2 are the mean number of photons in

these two modes of the field. (M1, and fl; should be re-
V -. ET. (3b) placed by f leiol and f1' e i o2 to describe propagation

d is the atomic dipole operator and ET is the sum of the effects. Since the paper is devoted to single atom effects,

incident fields. we omit the phase factors). Within the approximations

To second order in the incident fields, we find that the made in this paper, the stages II(N 1,N 2 ), 2(N 1 ,N 2 )),

populations and the coherence of the excited states are and 13(N,N 2)) are very close in energy, the separation

between Il(N1,N 2 )) and 13(N,N 2 )) being -iA, and
(2) + r__ +YL(4a) the separation between 12(N,,N 2 )) and 13(N,N2)) be-

___ -- Y 1 (4a)
Pb 4A b ing -hA;. In the dressed-atom approach, collisions in-

duce transitions between the dressed states. The steady-

(2) ' + Yba +YW a  state values pii and P22 of the populations of the levels
Pb 4A 2  + , (4b) I(NI,N 2 )) and 12(N 1 ,N 2 )) and of the coherencep 1 2 be-

tween I I(N1 ,N ,)) and 2(N,N 2 )) are'|

(2) flfl 1+ + , - Ybb' , -- 12t e( 1,-02)
b 4AA 1  -A;e

Fb'-i8 P11 Yba +Yba (7a)
(4c) 4A1 Fb

(2) {2)* (4dia 2
Pb'b -Pbb' (4d) P22 

2 
2 +. (7b)

where 4A2 Fb'

fll Yba ±Yb'a Ybb'(c
--A1 -A2 . (5) PI2 4A A ; rbb 'i 6  (70

In these expressions, 0, and 02 correspond to the phase of One recognizes in (7c) the collisional factor
the fields E, and E 2. If these fields propagate in the k, (Yb. ±Y+.- Ybb.), which is associated with the creation
and k2  directions, we have 01=k,.r+qT and of a coherence between dressed states through collisional
02=k 2 .r+q 2, where q)1 and q2 are some additional excitation. 9 The values ofp II and P22 result from an equi-
phases associated with fields I and 2, respectively. The librium between the collisional excitation of the level and
quantities Pbb and Pb'b' appear as the sum of a collision- decay by spontaneous emission. 7

free term and a collisionally aided term. The collision- Actually, the results presented above are only valid for
free term has been shown to be connected with Rayleigh stationary atoms. For a Doppler broadened medium, the
scattering at the laser frequency while the collisionally detuning 6 appearing in Eqs. (4c) and (7c), as well as else-
aided terms leads to fluorescence at the resonance fre- where in this paper, should be replaced by
quency.7 A similar separation exists for Pbb', the col- [8-(kI-k 2 ).v], where v is the atomic velocity. For the
lisionally aided term being proportional to the factor time being, we assume that I(k -k,).vI <<bb for all

(Vrb. + Yb'a-Ybb'), which has been rriginally introduced atoms in the sample, justifying our neglect of the residual
by Bloembergen, Loten and Lynch.' Doppler shift k 1 -k, ). v. The modifications of the re-

Another approach uses a dressed-atom basis. In the suits that would occur if ,(k-k 2).vl > Fb. is discussed
perturbative limit the eigenstates of the dressed-atom in the Conclusion.
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II. FLUORESCENCE OF A THREE-LEVEL ATOM

A. PIER resonance in atomic states populations

The aim of this section is to show how the fluorescence 0

originating from level b is modified by the field E2 acting
on the a-b' transition. Consequently, we seek a term in
the population of level b which depends on both E, and -5 5
E 2. Furthermore, we are interested only in the PIER res- IF
onance occurring around 6=0. This term should origi- 31.
nate from pbb' given in (4c). (b}

Solving the density-matrix equation to fourth order, we 30
find that the term of interest is equal to

I2-' (Yab)* Ybb' 15 0 5 c
16APA ;Fb i rbb-ib rbb,_ 6  

, (8)

where y', is the collisional factor of PIER 4 ij(c)

YbY& +y, -rYb* (9) 110

Equation (8) is valid in the limit that 1091

<<I . (10) 5 0 5
FIG. 2. Variation of the fluorescence IF emitted from the lev-

Let us split Ybb' into its real and imaginary parts el b vs the frequency w2 for various buffer-gas pressures. The
curves have been obtained by assuming that Yabb', Y , Yb', and
Ybb' are real and by taking y'b.b=y', =y&. We have fl, <<fl,

We also assume that the imaginary part of rbb, (which and fl /AI= 10- 2. We take rb=rb and fl/rb.=20. The
corresponds to a shift of the line) is included in 8. We curve a is obtained in absence of buffer gas (Ybb=O). The curve
crens t ok ,eal sf ofbthine) s i.1W b is obtained for a pressure of buffer gas such that Ybb = rb and
thus take rbb. real and obtain for Pbb the curve c for a higher pressure (Ybb'=Srb). The same arbi-

2 '2trary unit is used on the vertical axis of the three curves. The
()-- a (2 (Yb,') 8  (bb,),,bb, 1 ( abscissa corresponds to b'=(c 2 -co -o+Wo)/Fb. One can

P b 8 a2 r +b82 rb1 +82 011) note that in the range of pressure considered here the signal and
I b Ibb +2 bb' + 6the background increases with pressure. For higher pressure,

This pressure-induced contribution to the fluorescence the signal saturates while the background still increases.
from state b can have either a positive or negative sign (of
course, the total fluorescence from level b is positive).
The ratio of the relative magnitude of the PIER given by
(11) and of the background given by (4a) is tude will be represented by a diagram which, at this

(I) stage, should be considered a qualitative method for un-
Pbb 2 (12) derstanding the physics rather than a complete method
p2) A2 bb, for calculating the signal. If we consider the excitation of

level b, two possible paths can be considered. The first
Although it is assumed that IflU/All << 1, the ratio (12) is possibility [Fig. 3(a)] is a direct collisionally aided excita-
not necessarily very small compared to unity"1 since fl tion with absorption of one photon co1. The population of
can be larger than rbb,. Furthermore, when A2 varies, level b resulting from this process is proportional to the
the background remains constant while pbb exhibits a intensity of the field having frequency co, i.e., to fl . In
narrow resonance around A -A, =0. Thus the PIER fact, it is this process that leads to the collision-induced
should be observable on the fluorescence from the excited component of formula (4a) [or to formula (7a)]. A second
state. To have an image of how such resonance should possibility is a collisionally aided excitation of level b' fol-
appear, we have plotted in Fig. 2 the variation of the lowed by a two-photon transition from b' to b [Fig. 3(b)].
fluorescence IF emitted from level b versus the frequency This process alone would lead to a population of the level
Wo2 for several values of the buffer-gas pressure. The fre- b proportional to the square of the intensity of the field
quency wo, of the first source is assumed to remain con- having frequency co2 multiplied by the intensity of thestn adI i acuaedfo t 2)-- (1)t f 1
stant and IF is calculated from the sum pbb Pbb" field having frequency co, i.e., proportional to fl 4 fl 2. To

get the population Pbb, however, one must also consider

B. Interpretation In the uncoupled states basis the possibility of an interference between these two path-
ways. Indeed, the quantum states of the fields and of the

We first interpret this reso-ance in terms of interfer- internal degrees of freedom of the atom are the same in
ence between transition amplitudes. A transition ampli- the initial (la,N1,N 2 )) and final (tb,N, - 1,N 2 )) states
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b b _LN - s+ 2

cotlision I IN I,N 2 -=- cos0+ sin
L2A, 2A'2

col.ision WI XaN + 1,N 2 + 1 )

W, W +(cosO)lb,N,,N 2+ I)

+(sinO)Ib',NI + 1,N2 ) (15a)

2(N,,N 2 ) ) _2 cosO- l- sin0• aJa 2A A

(a) (b) Xla,Nj +1,N 2 +l)

FIG. 3. Collisionally aided excitation of level b. (a) Direct -(sinO)lbNjN 2 + 1)

pathway and (b) pathway with intermediate excitation of level + (cos0)I b', N I + 1, N 2  0 5b)
b'. The pressure-induced extra resonance on the population of
level b comes from the interference between these two path- with
ways.

tan20= (16)
(in the second pathway the absorption of a photon o2 is 2A18 (16

followed by an emission of a photon o2 with the net re- Let us now assume that initially, the system is in the state
sult that N2 is not changed). The transition amplitude j3(N 1 ,N2) ) . We calculate the probability of finding the
for the second pathway should exhibit a resonance when system in the state Il(N1 ,N2 )) after a collision, our
the two-photon transition from b' to b becomes ,esonant, demonstration being very similar to the one originally
i.e., when 8 =0 [see Fig. 3(b)]. This resonance should also done for the PIER resonances in four-wave mixing.9 We
appear in the interference term. In some sense, the in- call (D and 4)' the phase factors due to a collision of rela-
terference between the two pathways of Fig. 3 has an tive velocity v and impact parameter b on the transitions
effect similar to that of an heterodyne detection since the a-b and a-b', respectively. The state 10) of the system
effect associated with the pathway of Fig. 3(b) appears at after a collision is
a lower order of perturbation because of the interference
with the pathway of Fig. 3(a). If = a,Nj + 1, N2 + 1 ) + ile -'4 b,N 1 ,N 2 + 1)

The origin of the PIER resonance at 8=0 can also be 2A,
interpreted by a complementary argument. To have in- fill
terference effect between the two pathways of Fig. 3, we +- e'- 'b',NI + 1,N 2 ) . (17)
should also consider the external degrees of freedom since 2A;
the atom is not isolated but undergoes a collision. From (15a) and (17), we deduce the transition amplitude
Indeed, energy is exchanged between the active atom and to find the system in the state I(N,,N 2 )) after a col-
its collision partner. In the pathway shown in Fig. 3(a), lision,
the energy received by the atom is E. - hw . In the
pathway shown in Fig. 3(b), the energy received is I(Nl,N2)10) = fi
Eb'a-- -i2" In order to have the same change of kinetic -2A,(cs)(e 1)
energy of the colliding atoms for each pathway, we must
have + 2 (sin0)(e -) . (18)

Eb -i h =Eb'a - , (13) 2A
The transition probability is thus

8=0 . (14) 11
8=0(1) ( Il(N, ,N2 )10) F 2 (Cos 2 0)( 1 -cos4)

Thus the interference between the two pathways of Fig. 3 2A,
only occurs around 8 = 0.

+ " 1 '12 (cos0)(sinO)
4AIA

C. Interpretation in the dressed-state basis X [ (1 e - tp)( I - e "p' + c. c.]

We can also interpret this resonance using the + (sin20)(1-COS ') (19)

dressed-state basis. More precisely, when the two-photon 2A2

coupling between Ib,N1,N 2 + 1 ) and Ib',N + I,N2 ) be-
comes important, the states I l(N ,N 2 )) and 12(N,,N 2)) When we average the various phase factors over all possi-
should be written 9 ble collisions, we find 9
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1- e -) =y 1 ,(20a) k

((1 -e i)( + -e ')) - Yb 'a -Ybb' W2

Wb - =(20b)

Thus the mean collisionally aided excitation of level -b I
I(N,,N 2 )) in steady state is

fl
2

A, = - (cos20)(7r. +y 
W)

+ " (cosO)(sinO)(ya b+rVa*)
4A,2A;

+ 12 (sin20)(7 b'a + Yb) (21l) FIG. 4. Three-level atom plus continuum driven by two laser
+A" fields.

In the secular approximation 181 >>rbb., the steady-state
population of state I I(N1,N 2 )), denoted by p,, is equal
to AI/Fb. To compare this result with Eq. 011), we note -- Ak =Ek-"(o0)1 +o 2 ) . (24)

that the validity condition for Eq. 11) [Eq. (10)1 is The coupling between Il(N,,N2)), 12(N,,N 2 )) and
equivalent to 0<<1 when 181>>F.,. In thelimit 0<<1, Ik (N1, N2 ) ) is produced by the electric dipole interaction
we obtain having matrix elements

:a+r) n n,2 (22)+,a*
_11 fl' (Y,,b.7 +Y 1~..2 bbb (22) k N,21VIN, dkbE2 112 (25a)

4A2 rb 16,&2A2 8 rb 2) 2' =l

The second term of (22) coincides with the result of for- dkb.El _,1'
mula (11) for 18>>rbb. This shows that, in this ap- (k(N,,N 2 )1V12(N,,N2))- 2 2 (25b)

proach, the PIER resonance results from the contamina-
tion of the dressed state I I(N,,N2)) by a small amount Recall that states I(N 1,N2)) and I2(N,,N 2 )) are popu-

of the state lb'). The contamination is maximum when lated only in the presence of collisions.

the two uncoupled states Ib',Nl +l,N 2 ) and The state 13(N,,N 2 )) is also coupled to lk(N,,N2))
I b, N, N2 + I ) have the same energy, i.e., when the reso- through its small components depending on the atomic

nance condition for the two-photon transition is states b and b' [see formula (6c)]

fulfilled.' 2  n + V2
Finally, we note that the phase of the fields does not (k(N,,N2)V 3(N,N2))=- + _P (26)

appear in the formula (11), which give p -l. This is an in-
dication that the observation of this effect does not re- This term corresponds to the direct coupling between the
quire coherent fields. This indication is supported by the dressed state 13(N,,N 2 )) (adiabatically connected to the
physical discussion given above, which is done in terms of atomic ground state) and the continuum. In the absence
number states for the field. of collisions, the photoionization results from this two-

III. TWO-PHOTON IONIZATION 1 (N,N 2)

We still consider the three-level atom a,b,b', but now 2(N,,N2)
consider the possibility that a second photon is absorbed
to a state k in the continuum. More precisely, we study
the case where an absorption of a photon W2 from state b k(N, N,)
or an absorption of a photon o, from state b' leads to
ionization of the atom (Fig. 4).

In the dressed-state basis, we have to add to the states
given by formulas (6) the states Ik (N1, N2 ) ) correspond-
ing to the continuum (see Fig. 5) 3(N,,N 2)

lk(N,,N 2 ))=Ik,Nj,N 2 ) . (23)

With respect to 13(N,,N 2 )), the state Ik(N,,N 2 )) has
an energy FIG. 5. Energy levels in the dressed-state picture.
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photon coupling. The states of the continuum that are k //// 1/ k
reached by this direct photoionization mechanism are
those that have the same energy as 13(N,N 2 )), i.e.,
those for which W,

Eka = f(o +0) 2 ). (27) bcollision L

On the other hand, in presence of collisional damping, clio

two other photoionization processes are possible. First, b'
we can have a collisionally aided excitation of collision
I l(NI,N 2)) followed by an absorption of a photon hto2
[Fig. 6(a)]. The states of the continuum that are reached W

by this process have energies r.21

Ek'b =fzo 2 . (28) a a

The second process [Fig. 6(b)] is a collisionally aided exci- (a) (b)
tation of 12(N,N 2 )) followed by an absorption of a pho-
ton Awl . The states of the continuum that are reached by FIG. 6. Collisionally aided two-photon ionization. The path-
this process have energies way (a) involves the intermdliate excitation of level b and the

(29) pathway (b) the intermediate excitation of level b'. Note that
one photon of each mode is absorbed in each process. The

If we compare the states of the continuum that can be pressure-induced extra resonance in two-photon ionization
reached by the different processes, we find, by comparing comes from the interference between the pathways (a) and (b).

formulas (27) and (28) on one hand and formulas (27) and
(29) on the other hand,

Ekk, = f10) I - fi0 =- h& 1, (30a)

Ekk,-A(02.-' O--A . (30b) is a small quantity and the two collisionally aided photo-

Thus it can be deduced from the assumptions of our mod- ionization processes have to be handled together. In the

el that the states of the continuum reached by direct pho- following, we consider only the electrons that originate

toionization and by collisionally aided photoionization from the collisionally aided processes.
are well separated in energy and can be (at least theoreti- Let us consider a time interval t which is large com-
cally) distinguished by measuring the kinetic energy of pared to the time necessary to reach the steady-state
the ejected electron. On the other hand, values for p, , P12, and P22 [formula (7)]. We assume that

the states of the field are number states. The number of

Ek.,k,=h(At -A2)=A8 (31) photoelectrons of energy Ek generated is equal to

2fl' sin2[ (A-A k )t/2] f' 2  sin2 [(A-Ak )t/2]
Pkk 4 pi [(A kAk )/212 +"P22 [(A 'Ak )/212

4 -"2 Ak ) /2~ a  . .. 1 &tk)/

+ lf, 2 (P12j t'e jute +c.c. . (32)

If we call p(Ek) the density of states in the continuum, 2T f 2

the total number of photoelectrons obtained through a N AP(R) 4-fill 4-P22 t

collisionally aided process is

NIcoll= f dEkp(Ek )Pkk ( (33) + f1 2  (34)
(34)

The two first terms of formula (34) (proportional to PI
We assume that the continuum is sufficiently flat so that and P22) correspond to the photoionization processes de-
we can replace p( E k) by p(E) with scribed by the diagrams of Figs. 6(a) and 6(b), respective-
F, Eb+&i !-Eb,+'o 2. The integration of formula (33) ly. The last term of formula (34) describes the interfer-
with Pkk given by formula (32) then leads to ence between these two diagrams. Here again, we see
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that an interference occurs around 8=0, i.e., in a situa- Even if the interference process appears more intelligible
tion where the energy exchanged with the collision in Fig. 6 than in Fig. 3, we think that the process de-
partner is the same for the two pathways of Fig. 6. scribed in Sec. II is more suited to an experimental inves-

More precisely, when 8It >> 1 the interference term tigation.
contributes negligibly and we obtain, using formulas (7)
and (34), IV. TWO-PHOTON ABSORPTION

N 1o)=2 R 2 Y+OF A FOUR-LEVEL ATOMci) 2ir 1lf2 rba +ba

t I 16A2 r b The last example that we will consider is a four-levelatom (Fig. 7) driven by four laser fields. The new fields
'11',2 Yb'o+Y)a E3 and E4 (having frequencies () 3 and to4, respectively)+- b. ' (35) E n 41

'2  F drive the b-c and b'-c transitions, respectively.' 3 The de-tunings from resonance are denoted by A3 and A4,
On the other hand, when 18It << 1, there is an interfer-
ence between the two pathways and we find "A3=h6o3 -- Cwcb (37a)

N(coII)(8=0) f 4 iA4 =o 4 - *Wcb. (37b)

t We assume that the single-photon detunings IA31 and
_ 2ar2 - IA41 and the two-photon detunings IA,+A 31 and

A 16A2 F b  IA2+AI are much smaller than r' -1. For the sake of

simplicity, we also assume that

+ Y W Y-.'a to2+0o4 (38)
16A; 2  rb The detunings from the two-photon resonance are

flfl'A'l2 + Y 6) the same for the two possible excitation paths
I +cc. (A+A 3 A+A). We calculate the population ) to

fourth order in the field amplitudes. We denote by f1 3

Here again, the initial state Ia,Nj+l,N2 +l) and the and fl; the Rabi frequencies for the b-c and b'-c transi-
final state jk,N,,N 2 ) of the excitation processes shown in tions (f13= -dbcE 3 /ii, f1= -dcE 4/Ai). Besides the
Fig. 6 correspond to pure number states for the field. terms proportional to f1jf1j, which correspond to the ex-
The pressure-induced extra resonance predicted in two- citation through level b, and those proportional to
photon ionization does not require coherent fields. f1-2 flI, which correspond to the excitation through b',

We should also note that the effect calculated here there are terms depending on fL 'fl 3f1' which corre-
would prnh§1ly not h- easy to observe. It is essentially a spond to an interference between these two pathways. It
"gedanken" experiment suited to show the influence of is those terms, denoted by pdI, that we consider now. Us-
the interference between collisionally aided diagrams. ing perturbation theory, we find

p, =_ nl,n nf3n i°l°-4 - 1 I 1 + 1 1 1
C 161c -iA rca--i(A,+A3) rFb.-iA4 + ra+iA F,& i(A;+A) rcb+iA3

+ t+ Yb" + c.c. (39)
rbb,.-i8 rb-iA, r. 0  A2 rb iA. r+ *b+iA3

Regrouping the terms, this expression can be written

Ill fll1 203114 i(O+03- 02-04)Pe 6r e

r,-iA, rcb-i A 1  rb-i(A,+A3 ) rbO+iA2

+ + I +

F ,a~ ~~bab.[F,*+i [ rob +i(A3+A)]F,-A

+ + c.c. (40)

(A 3'-i)( F -iA,)(- % + )( b,- ia )(c b +iA3)

Using the relation ( A.,- A ) = -( A, -A2) = -8 , we finally obtain
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8 {)+0 3- 62 - t2r
0

2,4

PCC l6rc(r, -iAj )(rb'a +iA;) r (, )2 +(Al +A 3 )2

+ Y~b. (' +

') rr +~b'
+ ]~b'+c (41)(r~b-tA4)(r~b +,A 3, r+c -c.

where y'b. and r'b are defined by expressions similar to - -i(0 1+03-0 2-0 4) rc+Ybb.
formula (9) and PC_ A +ab Y Fbb,

Y b'-cb + YCb Vbb• (42)cb'=Ycb~~b'(43)

Let us now discuss Eq. (41). In the absence of collisions,
all the y are equal to zero and the only term that where

remains is the two-photon term centered at AI +A 3 -0. A,

This term represents the interference between the two A =2rc +Ybb- Y c'
pathways for two-photon excitation via fields co1+& 3 or (AI+ A3)2  Al+A 3 Al+A 3

(0 2 +(0 4. Once collisions occur, there are several new res- (44)

onant features centered at A;=O, A3 =0, and 8=0. Let
us first note that the second term of formula (41) is relat- The background term A grows linearly with the pressure.

ed to a collisionally aided excitation of the coherence be- The term exhibiting a resonance at 8=0 has a numerator
tween levels c and b' (see Fig. 8) identical to the one used which grows quadratically with the pressure, while the
in the four-wave mixing generation of Ref. 15. In other width of the resonance increases linearly with pressure.

words, the two pathways that interfere are associated The resonance at 8=0 is also obtained if we consider
with a collisionally aided two-photon absorption [Fig. the situation where the two single-photon transitions

8(a)] and a collisionally aided single-photon absorption from b to c and from b' to c are nearly resonant, but that

followed by the absorption of a photon w4 [Fig. 8(b)]. I A,I and IA21 are very large. In this case, the resonance

Similarly, the third term of formula (41) is related to an at 8=0 is very similar to the one described in Sec. III for

interference between the two pathways shown in Fig. 9. the two-photon ionization. However, there are some

Finally, we find that the resonance centered at 8=0 different features. In particular, there is a phase depen-

(which is analogous to the PIER 4 resonance') arises dence in formulas (41) and (43) that was not present in

from the last term of formula (41). In particular, if we as- formula (36). Let us first note that p~l) is a function of the

sume that the fields are detuned from the single-photon point r unless one assumes that
and two-photon resonances (IA 3i>>rcb, A I>>Fr'b,
IA,i r , lIA;i>>rbO, IA+A3I>>r,0 ) we find that
Eq. (41) reduces to C + C

collision

C l

j3  
collision

b W, W0b / 'W, ' Lw2

b

(a) (b)
W.01 FIG. 8. Collisionally aided excitation of level c. The path-

2 way (a) corresponds to a collisionally aided two-photon excita-
tion, while the pathway (b) is associated to a collisionally aided

aI two-step process with intermediate excitation of level b'. The
interference between these pathways leads to a pressure-induced

FIG. 7. Four-level atom driven by four applied laser fields, extra resonance centered at A4 =0.
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C C final state is Ic,Nj,N 2 -l,Nj,N 4 -1). Since the final

collision state is not the same for the two pathways, there is no
W31  possible interference between these pathways. 16 On the

b other hand, if the nondiagonal matrix elements for the
density matrix of the fields are not zero (as it is the casecollision W, for quasiclassical fields), 7 then the number of photons is

not fixed in the initial state and the interference can be re-
stored. For example, let us assume tnat the initial state is

W ,~ I = c,(, )c2(N 2 )c3(N 3 )c4(N 4

W 2 N ', , N , N 1 , N ',
X 1a,N,,N2z,N3,N'4 ) (45)

a a
The probability of finding the system in the final state

(a) (b) Iipf) = Ic,Nj,N 2,N 3 ,N 4 ) is proportional to

FIG. 9. Collisionally aided excitation of level c. The interfer- I ( ' I U1 Oib, ) 12- Ic (NI + 1 )c2 (N2 )c3 (N3 + I)
ence between the two pathways leads to a pressure-induced ex- Xc 4 (N 4 )[(NI + I )(N 3 + 1)]12
tra resonance centered at A3 = 0.

+cI(NI )c 2(N 2 + I )c3 (N 3 )c4(N 4 + 1)

k,+k 3 =k 2+k 4 . X[(N 2 +1)(N 4 + 1)12I / 2 . (46)

If this condition (similar to the phase-matching condition To obtain the probability to find the atom in state c, we
of four-wave mixing generation) is fulfilled, p(I' is in- have to sum formula (46) over N1, N2 , N 3, and N 4 . We
dependent of r. but still remains a function of the phases

of te feldthrogh fator e q Thi man see that the interference term is equal to zero unless we
of the field through a factor e i +3- .-) This means have ci(N , ) and ci(N i + 1) simultaneously different from
that the resonance centered at 5=0 vanishes unless the zero for the four fields.
fields are relatively coherent. In other words, to obtain a resonance on the popula-

This feature can be understood if we try to describe the tion of the c level, we have to start with a coherence
resonance at 8=0 as an interference between quantum
pathways similar to the one of Fig. 6. Let us first assume (A,N1+I,N 2 ,N 3 +I,N 4 p[A,N1,N,+I,N 3,N + I)
that all the fields are in number states and that the initial
state of the system is Ia,N,N 2,N 3 ,N 4 ). The two path- where oA,N,N2 ,N 3 ,N 4 ) is the dressed state adiabatical-
ways that should be considered now are associated with iy connected to the uncoupled state a,N,,N2,N3 ,N 4 ).
the absorption of one photon to, and one photon 0)3 [Fig.
10(a)] or with the absorption of one photon W2 and one (B,N 1 ,N 2,N 3+1,N 4 lp9 B',N,,N2,,N3,,N,1)
photon &J4 [Fig. 10(b)]. In the first case, the final state is

-c, NI-I,N2,N 3 - 1,N 4 ), while in the second case, the where B,Nj,N 2,N 3 ,N 4 ) and !B',N,,N2 ,N-,,N 4 ) are
the dressed states connected to b,NV,N 2,N 3,N 4 ) and

c C b',Nj,N 2,N 3,N 4 ), respectively. Finally, the action of
the fields 3 and 4 leads to a population

W)3 (c,N1,N 2,N 3,N 4Ipic,N1,N 2,N 3,N 4 ). In this approach,
W4  which is essentially similar to the one already developed

b in Ref. 4, the resonance at &=0 arises from the collision-

collion ally aided excitation of the coherence between the dressed

b' states B and B'.

collision CONCLUSION

In conclusion, we have presented three different exam-

,d2, pies of pressure-induced extra resonances that can be ob-
served in nonjinear spectroscopy. We have shown that

a all these resonances can be qualitatively interpreted in
terms of interference between quantum pathways, each

(a) (b) pathway involving a collisionally aided excitation. Final-

FIG. 10. Collisionally aided excitation of level c. The path- ly, we have shown that the resonances can be obtained in
way (a) corresponds to a collisionallv aided two-step excitation some cases with incoherent fields while, in other cases,
with intermediate excitation of level b. The pathway (b) is asso- 1herent fields are required.
ciated to a similar process with intermediate excitation of level Implicit in our approach has been the neglect of any
b'. The interference between these pathways leads to a effects arising from the atoms' velocity. As long as the
pressure-induced extra resonance centered at h=0. single-photon and two-photon detunings 'A, . A', , A,
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IAlI, IA1+A 31 are all much greater than the Doppler determined in a large part by the energy separation of
widths associated with their corresponding transitions, levels b and b'. To observe PIER, it is thus best to have
one is at liberty to neglect the Doppler shifts associated two nearby energy levels.
with these terms. On the other hand, 181 is a small quan-
tity compared with IA,1 or IAi1, consequently, one should
include any effects of residual Doppler shifts in all terms ACKNOWLEDGMENTS
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cessus d'interaction entre Photons et Atomes (InterEditions, 16The same argument can be applied for the diagrams of Figs. 7
Paris, 1988), Complement B VI. and 8.

8N. Bloembergen, H. Loten, and R. T. Lynch, Jr., Indian J. 17See, for example, R. J. Glauber, in Quantum Optics and Elec-
Pure Appl. Phys. 16, 151 (1978). tronics, edited by C. de Witt, A. Blandin, and C. Cohen-

9 G. Grynberg, J. Phys. B 14, 2089 (1981). Tannoudji (Gordon and Breach, New York, 1965), p. 63.
'0 Actually the coherences given by Eqs. (7) are the reduced

coherences, which are related to the real coheren-
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Motivated in large part by the work of Bloembergen and
coworkers, there has been considt -able interest over the past ten
years in the study of pressure-induced extra resonances, a class of
resonant structures that appear in spectroscopic line e .apes only
in the presence of collisions (1). What is pa-ticularly intriguing
ab'ut the pressure-induced resonances is that collisions, which
are often thought to broaden and destroy coherent structures, are
essential for producing these resonances. Moreover, the
pressure-induced resonances can be very narrow, in some cases
having widths equal to the inverse lif et ime of the ground states of
the atoms which are interacting with the laser fields. It is
relatively simple to obtain theoretical expressions for the
pressure-induced resonances. What has been more elusive, however,
is a physical explanation of their origin.

We present an interpretation of pressure-induced resonances
based on a dressed-atom picture of the atom-field interaction
(2)-(4). Both semiclassical (classical fields -
quantum-mechanical atoms) and fully-quantized .(quantized fields-
quantum-mechanical atoms) dressed-state theories are employed.
Using this dressed-atom approach, we are able to show that the
vanishing of the pressure-induced resonances in the absence of
collisions is a direct consequence of the conservation of energy.
The positions and widths of the resonances can be attributed either
to a modulated dressed-state population or to a level-crossing of
the dressed states.

In order to illustrate the physical concepts, we consider a
pressure-induced resonance that is produced in fluorescence beat.
4) ,S5). A two-level atom is subjected to two copropagating laser
ielis (Fig. 1). The first field has frequencyfl and is

detuned by A = " from the atomic resonance, while the second field
has frequency 0+6. It is assumed that 161 < 7a(I AI (7 is the decay
rate of the excited state) and that IAI is much greater than the
Doppler width associated with the 1-2 transition. If the incident
fields are relatively coherent, it is found that part of the
fluorescence from level 2 is modulated at frequency 6. To lowest
order in the applied fields, this component of the fluorescence,
denoted by 1(6), is given by

A 2 Fig. 1. Copropagating laser0+6 fielda having frequencies

+Q and 0+6 are incident on
w on a two-level atom.

0 Modulated fluorescence from
level 2 is monitored as a

1 function of 6.
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I(M= XlZ e i at I+ 'Y21_r + C.C..
1 L .

where XI is a Rabi frequency associated with field i and is

collision rate associated with the atomic coherence P12. The
modulated fluorescence consists of a background term (present even
in the absence of collisions) and a pressure-induced term which
exhibits a resonant structure centered at 6=0, having vidth 72.

To explain the physical origin of this resonance, we use a
fully-quantized dressed-atom approach. To lowest order in the
applied fields, the appropriate dressed states are given by

IA; ni,n2> = 11 l nl,n2> + 0(nt) '1;nj-,n.2>

+ 0(n2) 12:nt,nr-i>

IB:nt,n2> = 12;nt,n2> - 0*(nt+t) I 1 ;nl~l,n2>
- )* (n2+1) I 1;nl ,n2-l>,

where the aIs label the photon number states of the fields,

O(n) = igr'/A,

and g is a coupling constant. Some of the dressed energy levels are
shown in Fig. 2

The structure of the fluorescence beats can now be understood as
follows: In the absence of collisions, all population remains in
the "A" dressed states, since there is no physical mechanism to
provide the energy difference M to transfer population fromstates AtoO & -o ~ -.,,i pad iA?.nt~n2+i> each contain
an adricture o- state -, tixey can undergo a radiative decay
to state IA;n,,n2>. The component of the modulated fluorescence
associated with this collision-free contribution is

Icf(6 )  0(n+) 0* (n2+1)P +n 2;n,n+l(t) + c.c.
nln2

where pF (t) is the free-field density matrix. There is no resonant
structure centered at 60. As can be seen in Fig. 2. the
collision-free contribution to the fluorescence occurs at the
laser frequencies.

IB;n 1,n2 > Fig. 2. Dressed states of the
atom-field system. Collisions
couple states A and B within a

>~iven manif old (curved arrow).
I A;nl n2+1 > coherence between states{ IA;:,nt-i> and IA;nti~ns>SA'nl +I'n2 > produced by the incident fields

leads to background (a) and
0 pressure-induced (fl) modulated

a fluorescence.

JA;n,n 2 >
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with collisions present, states [A>and Hwithin agiven s

dressed-state manifold are coupled since the collisional T
interaction can provide the energy mismatch M between these
states. Radiative decay from level IB;nl,n 2> to IA;nl,n? results in
fluorescence centered at the atomsc frequency (see Fig. 2 - recall
that A+0 = w). The modulated component of this fluorescence is
given by G

Ic (6) = 9(nt+1)0*(n 2+1) [2r/( 72+i6)]

Pnl+l,n 2;nl,n 2+l(t) + c.c.
IL

The amplitude of this collision-induced component vanishes in the
absence of collisions. Owing to the modulation of p . the ct

fluorescence exhibits a resonant structure centered at 6=0, having tc
width 72. The modulated fluorescence can be traced to a combined C'

collisional-radiative process that couples the initial coherence S
Pa .nl+l ,n2;A ,ni,n2+l to the dressed-state population

P ,n,n2;B,nl ,n2' 
P

It is seen that the fluorescence vanishes unless n+ ,n 0 for d.

each of the incident fields. In other words, the incident fields ir
must be phase coherent to produce the fluorescence beats. The same tf
conclusion would have been reached had we used a semiclassical
dressed atom approach (4). In that case the collision-induced d,

modulated signal is proportional to XrIra which vanishes . on o1

average, for uncorrelated fields. In a manner analogous to that
presented for fluorescence beats, one can use a dressed-atom
approach to explain the pressure-induced resonances that can be
produced when (a) a three-level atom is excited by four incident
fields (3); (b) a four-level atom is excited by four incident
fields (6 : an atom is ionized by four fields (6): and (d) four-wave
mixing signals are generated in active media of two or three-level A
atoms. In contrast to cases (a)-(c). in case (d) the signal depends "
only on the average number of photons in each incident field; the n
incident fields need only be spatially coherent to generate the
appropriate phase-matched emission. (.
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